metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D27, C27⋊C2, C9.S3, C3.D9, sometimes denoted D54 or Dih27 or Dih54, SmallGroup(54,1)
Series: Derived ►Chief ►Lower central ►Upper central
C27 — D27 |
Generators and relations for D27
G = < a,b | a27=b2=1, bab=a-1 >
Character table of D27
class | 1 | 2 | 3 | 9A | 9B | 9C | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | |
size | 1 | 27 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | -1 | -1 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ5 | 2 | 0 | 2 | -1 | -1 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ6 | 2 | 0 | 2 | -1 | -1 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ7 | 2 | 0 | -1 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2723+ζ274 | ζ2714+ζ2713 | ζ2717+ζ2710 | ζ2719+ζ278 | ζ2726+ζ27 | ζ2725+ζ272 | ζ2720+ζ277 | ζ2716+ζ2711 | ζ2722+ζ275 | orthogonal faithful |
ρ8 | 2 | 0 | -1 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2719+ζ278 | ζ2726+ζ27 | ζ2720+ζ277 | ζ2716+ζ2711 | ζ2725+ζ272 | ζ2723+ζ274 | ζ2714+ζ2713 | ζ2722+ζ275 | ζ2717+ζ2710 | orthogonal faithful |
ρ9 | 2 | 0 | -1 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2717+ζ2710 | ζ2719+ζ278 | ζ2725+ζ272 | ζ2720+ζ277 | ζ2716+ζ2711 | ζ2722+ζ275 | ζ2723+ζ274 | ζ2714+ζ2713 | ζ2726+ζ27 | orthogonal faithful |
ρ10 | 2 | 0 | -1 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2720+ζ277 | ζ2716+ζ2711 | ζ2723+ζ274 | ζ2714+ζ2713 | ζ2722+ζ275 | ζ2717+ζ2710 | ζ2719+ζ278 | ζ2726+ζ27 | ζ2725+ζ272 | orthogonal faithful |
ρ11 | 2 | 0 | -1 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2716+ζ2711 | ζ2725+ζ272 | ζ2714+ζ2713 | ζ2722+ζ275 | ζ2723+ζ274 | ζ2719+ζ278 | ζ2726+ζ27 | ζ2717+ζ2710 | ζ2720+ζ277 | orthogonal faithful |
ρ12 | 2 | 0 | -1 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2725+ζ272 | ζ2720+ζ277 | ζ2722+ζ275 | ζ2723+ζ274 | ζ2714+ζ2713 | ζ2726+ζ27 | ζ2717+ζ2710 | ζ2719+ζ278 | ζ2716+ζ2711 | orthogonal faithful |
ρ13 | 2 | 0 | -1 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2722+ζ275 | ζ2723+ζ274 | ζ2726+ζ27 | ζ2717+ζ2710 | ζ2719+ζ278 | ζ2716+ζ2711 | ζ2725+ζ272 | ζ2720+ζ277 | ζ2714+ζ2713 | orthogonal faithful |
ρ14 | 2 | 0 | -1 | ζ2724+ζ273 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2726+ζ27 | ζ2717+ζ2710 | ζ2716+ζ2711 | ζ2725+ζ272 | ζ2720+ζ277 | ζ2714+ζ2713 | ζ2722+ζ275 | ζ2723+ζ274 | ζ2719+ζ278 | orthogonal faithful |
ρ15 | 2 | 0 | -1 | ζ2715+ζ2712 | ζ2721+ζ276 | ζ2724+ζ273 | ζ2714+ζ2713 | ζ2722+ζ275 | ζ2719+ζ278 | ζ2726+ζ27 | ζ2717+ζ2710 | ζ2720+ζ277 | ζ2716+ζ2711 | ζ2725+ζ272 | ζ2723+ζ274 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)
G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)], [(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15)]])
G:=TransitiveGroup(27,8);
D27 is a maximal subgroup of
D81 C27⋊C6 C27⋊S3 C9.S4 D135 D189
D27 is a maximal quotient of Dic27 D81 C27⋊S3 C9.S4 D135 D189
Matrix representation of D27 ►in GL2(𝔽109) generated by
87 | 58 |
51 | 29 |
1 | 0 |
108 | 108 |
G:=sub<GL(2,GF(109))| [87,51,58,29],[1,108,0,108] >;
D27 in GAP, Magma, Sage, TeX
D_{27}
% in TeX
G:=Group("D27");
// GroupNames label
G:=SmallGroup(54,1);
// by ID
G=gap.SmallGroup(54,1);
# by ID
G:=PCGroup([4,-2,-3,-3,-3,81,125,362,82,579]);
// Polycyclic
G:=Group<a,b|a^27=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D27 in TeX
Character table of D27 in TeX