Extensions 1→N→G→Q→1 with N=Dic3×C18 and Q=C2

Direct product G=N×Q with N=Dic3×C18 and Q=C2
dρLabelID
Dic3×C2×C18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=Dic3×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C18)⋊1C2 = D18⋊Dic3φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18):1C2432,91
(Dic3×C18)⋊2C2 = C6.18D36φ: C2/C1C2 ⊆ Out Dic3×C1872(Dic3xC18):2C2432,92
(Dic3×C18)⋊3C2 = C9×D6⋊C4φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18):3C2432,135
(Dic3×C18)⋊4C2 = C9×C6.D4φ: C2/C1C2 ⊆ Out Dic3×C1872(Dic3xC18):4C2432,165
(Dic3×C18)⋊5C2 = C2×C3⋊D36φ: C2/C1C2 ⊆ Out Dic3×C1872(Dic3xC18):5C2432,307
(Dic3×C18)⋊6C2 = D18.3D6φ: C2/C1C2 ⊆ Out Dic3×C18724(Dic3xC18):6C2432,305
(Dic3×C18)⋊7C2 = C2×Dic3×D9φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18):7C2432,304
(Dic3×C18)⋊8C2 = C2×C18.D6φ: C2/C1C2 ⊆ Out Dic3×C1872(Dic3xC18):8C2432,306
(Dic3×C18)⋊9C2 = C9×D42S3φ: C2/C1C2 ⊆ Out Dic3×C18724(Dic3xC18):9C2432,359
(Dic3×C18)⋊10C2 = C18×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×C1872(Dic3xC18):10C2432,375
(Dic3×C18)⋊11C2 = S3×C2×C36φ: trivial image144(Dic3xC18):11C2432,345

Non-split extensions G=N.Q with N=Dic3×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C18).1C2 = Dic9⋊Dic3φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).1C2432,88
(Dic3×C18).2C2 = C18.Dic6φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).2C2432,89
(Dic3×C18).3C2 = C9×Dic3⋊C4φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).3C2432,132
(Dic3×C18).4C2 = C9×C4⋊Dic3φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).4C2432,133
(Dic3×C18).5C2 = Dic3⋊Dic9φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).5C2432,90
(Dic3×C18).6C2 = C2×C9⋊Dic6φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).6C2432,303
(Dic3×C18).7C2 = Dic3×Dic9φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).7C2432,87
(Dic3×C18).8C2 = C18×Dic6φ: C2/C1C2 ⊆ Out Dic3×C18144(Dic3xC18).8C2432,341
(Dic3×C18).9C2 = Dic3×C36φ: trivial image144(Dic3xC18).9C2432,131

׿
×
𝔽