Extensions 1→N→G→Q→1 with N=C6×C3.A4 and Q=C2

Direct product G=N×Q with N=C6×C3.A4 and Q=C2
dρLabelID
C2×C6×C3.A4108C2xC6xC3.A4432,548

Semidirect products G=N:Q with N=C6×C3.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C3.A4)⋊1C2 = C2×S3×C3.A4φ: C2/C1C2 ⊆ Out C6×C3.A4366(C6xC3.A4):1C2432,541
(C6×C3.A4)⋊2C2 = C6×C3.S4φ: C2/C1C2 ⊆ Out C6×C3.A4366(C6xC3.A4):2C2432,534
(C6×C3.A4)⋊3C2 = C2×C32.3S4φ: C2/C1C2 ⊆ Out C6×C3.A454(C6xC3.A4):3C2432,537

Non-split extensions G=N.Q with N=C6×C3.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C3.A4).1C2 = Dic3×C3.A4φ: C2/C1C2 ⊆ Out C6×C3.A4366(C6xC3.A4).1C2432,271
(C6×C3.A4).2C2 = C3×C6.S4φ: C2/C1C2 ⊆ Out C6×C3.A4366(C6xC3.A4).2C2432,250
(C6×C3.A4).3C2 = C62.10Dic3φ: C2/C1C2 ⊆ Out C6×C3.A4108(C6xC3.A4).3C2432,259
(C6×C3.A4).4C2 = C12×C3.A4φ: trivial image108(C6xC3.A4).4C2432,331

׿
×
𝔽