Extensions 1→N→G→Q→1 with N=Dic9 and Q=C2xC6

Direct product G=NxQ with N=Dic9 and Q=C2xC6
dρLabelID
C2xC6xDic9144C2xC6xDic9432,372

Semidirect products G=N:Q with N=Dic9 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
Dic9:1(C2xC6) = D4xC9:C6φ: C2xC6/C2C6 ⊆ Out Dic93612+Dic9:1(C2xC6)432,362
Dic9:2(C2xC6) = C2xDic9:C6φ: C2xC6/C2C6 ⊆ Out Dic972Dic9:2(C2xC6)432,379
Dic9:3(C2xC6) = C2xC4xC9:C6φ: C2xC6/C22C3 ⊆ Out Dic972Dic9:3(C2xC6)432,353
Dic9:4(C2xC6) = C22xC9:C12φ: C2xC6/C22C3 ⊆ Out Dic9144Dic9:4(C2xC6)432,378
Dic9:5(C2xC6) = C3xD4xD9φ: C2xC6/C6C2 ⊆ Out Dic9724Dic9:5(C2xC6)432,356
Dic9:6(C2xC6) = C6xC9:D4φ: C2xC6/C6C2 ⊆ Out Dic972Dic9:6(C2xC6)432,374
Dic9:7(C2xC6) = D9xC2xC12φ: trivial image144Dic9:7(C2xC6)432,342

Non-split extensions G=N.Q with N=Dic9 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
Dic9.1(C2xC6) = C2xC36.C6φ: C2xC6/C2C6 ⊆ Out Dic9144Dic9.1(C2xC6)432,352
Dic9.2(C2xC6) = D36:6C6φ: C2xC6/C2C6 ⊆ Out Dic9726Dic9.2(C2xC6)432,355
Dic9.3(C2xC6) = Dic18:2C6φ: C2xC6/C2C6 ⊆ Out Dic97212-Dic9.3(C2xC6)432,363
Dic9.4(C2xC6) = Q8xC9:C6φ: C2xC6/C2C6 ⊆ Out Dic97212-Dic9.4(C2xC6)432,370
Dic9.5(C2xC6) = D36:3C6φ: C2xC6/C22C3 ⊆ Out Dic97212+Dic9.5(C2xC6)432,371
Dic9.6(C2xC6) = C6xDic18φ: C2xC6/C6C2 ⊆ Out Dic9144Dic9.6(C2xC6)432,340
Dic9.7(C2xC6) = C3xD36:5C2φ: C2xC6/C6C2 ⊆ Out Dic9722Dic9.7(C2xC6)432,344
Dic9.8(C2xC6) = C3xD4:2D9φ: C2xC6/C6C2 ⊆ Out Dic9724Dic9.8(C2xC6)432,357
Dic9.9(C2xC6) = C3xQ8xD9φ: C2xC6/C6C2 ⊆ Out Dic91444Dic9.9(C2xC6)432,364
Dic9.10(C2xC6) = C3xQ8:3D9φ: trivial image1444Dic9.10(C2xC6)432,365

׿
x
:
Z
F
o
wr
Q
<