Copied to
clipboard

G = C3xD4xD9order 432 = 24·33

Direct product of C3, D4 and D9

direct product, metabelian, supersoluble, monomial

Aliases: C3xD4xD9, D36:9C6, C12:6D18, C62.73D6, C4:1(C6xD9), C9:6(C6xD4), C36:5(C2xC6), (C4xD9):6C6, (D4xC9):8C6, (C2xC6):7D18, C9:D4:5C6, (C12xD9):4C2, (C3xD36):9C2, D18:6(C2xC6), C22:3(C6xD9), C12.13(S3xC6), (C3xC36):4C22, (C6xC18):5C22, Dic9:5(C2xC6), (C22xD9):8C6, (C6xD9):9C22, C32.6(S3xD4), (C3xC12).101D6, C6.53(C22xD9), (C3xC18).42C23, C18.19(C22xC6), (C3xDic9):8C22, (D4xC32).11S3, (D4xC3xC9):3C2, (C2xC6xD9):5C2, C3.1(C3xS3xD4), C2.6(C2xC6xD9), (C3xC9):14(C2xD4), C6.31(S3xC2xC6), (C2xC18):7(C2xC6), (C3xC9:D4):5C2, (C2xC6).8(S3xC6), (C3xD4).7(C3xS3), (C3xC6).156(C22xS3), SmallGroup(432,356)

Series: Derived Chief Lower central Upper central

C1C18 — C3xD4xD9
C1C3C9C18C3xC18C6xD9C2xC6xD9 — C3xD4xD9
C9C18 — C3xD4xD9
C1C6C3xD4

Generators and relations for C3xD4xD9
 G = < a,b,c,d,e | a3=b4=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 750 in 178 conjugacy classes, 62 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, D4, C23, C9, C9, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xD4, D9, D9, C18, C18, C3xS3, C3xC6, C3xC6, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xD4, C22xS3, C22xC6, C3xC9, Dic9, C36, C36, D18, D18, D18, C2xC18, C2xC18, C3xDic3, C3xC12, S3xC6, C62, S3xD4, C6xD4, C3xD9, C3xD9, C3xC18, C3xC18, C4xD9, D36, C9:D4, D4xC9, D4xC9, C22xD9, S3xC12, C3xD12, C3xC3:D4, D4xC32, S3xC2xC6, C3xDic9, C3xC36, C6xD9, C6xD9, C6xD9, C6xC18, D4xD9, C3xS3xD4, C12xD9, C3xD36, C3xC9:D4, D4xC3xC9, C2xC6xD9, C3xD4xD9
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, D9, C3xS3, C3xD4, C22xS3, C22xC6, D18, S3xC6, S3xD4, C6xD4, C3xD9, C22xD9, S3xC2xC6, C6xD9, D4xD9, C3xS3xD4, C2xC6xD9, C3xD4xD9

Smallest permutation representation of C3xD4xD9
On 72 points
Generators in S72
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)(37 64 46 55)(38 65 47 56)(39 66 48 57)(40 67 49 58)(41 68 50 59)(42 69 51 60)(43 70 52 61)(44 71 53 62)(45 72 54 63)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 39)(2 38)(3 37)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 52)(11 51)(12 50)(13 49)(14 48)(15 47)(16 46)(17 54)(18 53)(19 61)(20 60)(21 59)(22 58)(23 57)(24 56)(25 55)(26 63)(27 62)(28 70)(29 69)(30 68)(31 67)(32 66)(33 65)(34 64)(35 72)(36 71)

G:=sub<Sym(72)| (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,39)(2,38)(3,37)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,54)(18,53)(19,61)(20,60)(21,59)(22,58)(23,57)(24,56)(25,55)(26,63)(27,62)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71)>;

G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,39)(2,38)(3,37)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,54)(18,53)(19,61)(20,60)(21,59)(22,58)(23,57)(24,56)(25,55)(26,63)(27,62)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,72)(36,71) );

G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69)], [(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22),(37,64,46,55),(38,65,47,56),(39,66,48,57),(40,67,49,58),(41,68,50,59),(42,69,51,60),(43,70,52,61),(44,71,53,62),(45,72,54,63)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,39),(2,38),(3,37),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,52),(11,51),(12,50),(13,49),(14,48),(15,47),(16,46),(17,54),(18,53),(19,61),(20,60),(21,59),(22,58),(23,57),(24,56),(25,55),(26,63),(27,62),(28,70),(29,69),(30,68),(31,67),(32,66),(33,65),(34,64),(35,72),(36,71)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A6B6C···6I6J···6O6P6Q6R6S6T6U6V6W9A···9I12A12B12C12D12E12F12G18A···18I18J···18AA36A···36I
order122222223333344666···66···6666666669···91212121212121218···1818···1836···36
size112299181811222218112···24···49999181818182···22244418182···24···44···4

90 irreducible representations

dim111111111111222222222222224444
type+++++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D6D6D9C3xS3C3xD4D18S3xC6D18S3xC6C3xD9C6xD9C6xD9S3xD4D4xD9C3xS3xD4C3xD4xD9
kernelC3xD4xD9C12xD9C3xD36C3xC9:D4D4xC3xC9C2xC6xD9D4xD9C4xD9D36C9:D4D4xC9C22xD9D4xC32C3xD9C3xC12C62C3xD4C3xD4D9C12C12C2xC6C2xC6D4C4C22C32C3C3C1
# reps1112122224241212324326466121326

Matrix representation of C3xD4xD9 in GL4(F37) generated by

10000
01000
0010
0001
,
36000
03600
0001
00360
,
36000
03600
0001
0010
,
34000
01200
0010
0001
,
01200
34000
0010
0001
G:=sub<GL(4,GF(37))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[36,0,0,0,0,36,0,0,0,0,0,36,0,0,1,0],[36,0,0,0,0,36,0,0,0,0,0,1,0,0,1,0],[34,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[0,34,0,0,12,0,0,0,0,0,1,0,0,0,0,1] >;

C3xD4xD9 in GAP, Magma, Sage, TeX

C_3\times D_4\times D_9
% in TeX

G:=Group("C3xD4xD9");
// GroupNames label

G:=SmallGroup(432,356);
// by ID

G=gap.SmallGroup(432,356);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,303,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<