Extensions 1→N→G→Q→1 with N=C3 and Q=C3×D42S3

Direct product G=N×Q with N=C3 and Q=C3×D42S3
dρLabelID
C32×D42S372C3^2xD4:2S3432,705

Semidirect products G=N:Q with N=C3 and Q=C3×D42S3
extensionφ:Q→Aut NdρLabelID
C31(C3×D42S3) = C3×D12⋊S3φ: C3×D42S3/C3×Dic6C2 ⊆ Aut C3484C3:1(C3xD4:2S3)432,644
C32(C3×D42S3) = C3×D125S3φ: C3×D42S3/S3×C12C2 ⊆ Aut C3484C3:2(C3xD4:2S3)432,643
C33(C3×D42S3) = C3×D6.3D6φ: C3×D42S3/C6×Dic3C2 ⊆ Aut C3244C3:3(C3xD4:2S3)432,652
C34(C3×D42S3) = C3×D6.4D6φ: C3×D42S3/C3×C3⋊D4C2 ⊆ Aut C3244C3:4(C3xD4:2S3)432,653
C35(C3×D42S3) = C3×C12.D6φ: C3×D42S3/D4×C32C2 ⊆ Aut C372C3:5(C3xD4:2S3)432,715

Non-split extensions G=N.Q with N=C3 and Q=C3×D42S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×D42S3) = C3×D42D9φ: C3×D42S3/D4×C32C2 ⊆ Aut C3724C3.1(C3xD4:2S3)432,357
C3.2(C3×D42S3) = C62.13D6φ: C3×D42S3/D4×C32C2 ⊆ Aut C37212-C3.2(C3xD4:2S3)432,361
C3.3(C3×D42S3) = Dic182C6φ: C3×D42S3/D4×C32C2 ⊆ Aut C37212-C3.3(C3xD4:2S3)432,363
C3.4(C3×D42S3) = C9×D42S3central extension (φ=1)724C3.4(C3xD4:2S3)432,359

׿
×
𝔽