Extensions 1→N→G→Q→1 with N=C3 and Q=C3xD4:2S3

Direct product G=NxQ with N=C3 and Q=C3xD4:2S3
dρLabelID
C32xD4:2S372C3^2xD4:2S3432,705

Semidirect products G=N:Q with N=C3 and Q=C3xD4:2S3
extensionφ:Q→Aut NdρLabelID
C3:1(C3xD4:2S3) = C3xD12:S3φ: C3xD4:2S3/C3xDic6C2 ⊆ Aut C3484C3:1(C3xD4:2S3)432,644
C3:2(C3xD4:2S3) = C3xD12:5S3φ: C3xD4:2S3/S3xC12C2 ⊆ Aut C3484C3:2(C3xD4:2S3)432,643
C3:3(C3xD4:2S3) = C3xD6.3D6φ: C3xD4:2S3/C6xDic3C2 ⊆ Aut C3244C3:3(C3xD4:2S3)432,652
C3:4(C3xD4:2S3) = C3xD6.4D6φ: C3xD4:2S3/C3xC3:D4C2 ⊆ Aut C3244C3:4(C3xD4:2S3)432,653
C3:5(C3xD4:2S3) = C3xC12.D6φ: C3xD4:2S3/D4xC32C2 ⊆ Aut C372C3:5(C3xD4:2S3)432,715

Non-split extensions G=N.Q with N=C3 and Q=C3xD4:2S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3xD4:2S3) = C3xD4:2D9φ: C3xD4:2S3/D4xC32C2 ⊆ Aut C3724C3.1(C3xD4:2S3)432,357
C3.2(C3xD4:2S3) = C62.13D6φ: C3xD4:2S3/D4xC32C2 ⊆ Aut C37212-C3.2(C3xD4:2S3)432,361
C3.3(C3xD4:2S3) = Dic18:2C6φ: C3xD4:2S3/D4xC32C2 ⊆ Aut C37212-C3.3(C3xD4:2S3)432,363
C3.4(C3xD4:2S3) = C9xD4:2S3central extension (φ=1)724C3.4(C3xD4:2S3)432,359

׿
x
:
Z
F
o
wr
Q
<