Copied to
clipboard

G = C3xD4:2S3order 144 = 24·32

Direct product of C3 and D4:2S3

direct product, metabelian, supersoluble, monomial

Aliases: C3xD4:2S3, Dic6:3C6, C12.37D6, C62.13C22, (C4xS3):2C6, D4:2(C3xS3), (C3xD4):5S3, (C3xD4):3C6, C3:D4:2C6, C4.5(S3xC6), (C2xC6).7D6, (S3xC12):6C2, C12.5(C2xC6), D6.2(C2xC6), (C2xDic3):3C6, (C3xDic6):8C2, (C6xDic3):9C2, (D4xC32):4C2, C32:9(C4oD4), C6.6(C22xC6), C22.1(S3xC6), (C3xC6).24C23, C6.45(C22xS3), Dic3.3(C2xC6), (S3xC6).11C22, (C3xC12).21C22, (C3xDic3).13C22, (C2xC6).(C2xC6), C2.7(S3xC2xC6), C3:2(C3xC4oD4), (C3xC3:D4):6C2, SmallGroup(144,163)

Series: Derived Chief Lower central Upper central

C1C6 — C3xD4:2S3
C1C3C6C3xC6S3xC6S3xC12 — C3xD4:2S3
C3C6 — C3xD4:2S3
C1C6C3xD4

Generators and relations for C3xD4:2S3
 G = < a,b,c,d,e | a3=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 164 in 88 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C4oD4, C3xS3, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C3xD4, C3xQ8, C3xDic3, C3xDic3, C3xC12, S3xC6, C62, D4:2S3, C3xC4oD4, C3xDic6, S3xC12, C6xDic3, C3xC3:D4, D4xC32, C3xD4:2S3
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S3xC6, D4:2S3, C3xC4oD4, S3xC2xC6, C3xD4:2S3

Permutation representations of C3xD4:2S3
On 24 points - transitive group 24T209
Generators in S24
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(6 8)(9 11)(13 15)(18 20)(22 24)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)

G:=sub<Sym(24)| (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)>;

G:=Group( (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20) );

G=PermutationGroup([[(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(6,8),(9,11),(13,15),(18,20),(22,24)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)]])

G:=TransitiveGroup(24,209);

C3xD4:2S3 is a maximal subgroup of
Dic6:3D6  Dic6.19D6  D12.22D6  Dic6.20D6  Dic6.24D6  Dic6:12D6  D12:13D6  C3xS3xC4oD4  C62.13D6  Dic18:2C6  C62.16D6
C3xD4:2S3 is a maximal quotient of
C3xD4xDic3  C62.13D6  Dic18:2C6

45 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C···6I6J···6O6P6Q12A12B12C12D12E12F12G12H12I12J12K12L12M
order122223333344444666···66···66612121212121212121212121212
size112261122223366112···24···4662233334446666

45 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D6D6C4oD4C3xS3S3xC6S3xC6C3xC4oD4D4:2S3C3xD4:2S3
kernelC3xD4:2S3C3xDic6S3xC12C6xDic3C3xC3:D4D4xC32D4:2S3Dic6C4xS3C2xDic3C3:D4C3xD4C3xD4C12C2xC6C32D4C4C22C3C3C1
# reps1112212224421122224412

Matrix representation of C3xD4:2S3 in GL4(F7) generated by

4000
0400
0040
0004
,
0064
3063
4426
6145
,
6160
6623
6533
0436
,
0046
2310
6122
4450
,
3350
6046
6132
0001
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,3,4,6,0,0,4,1,6,6,2,4,4,3,6,5],[6,6,6,0,1,6,5,4,6,2,3,3,0,3,3,6],[0,2,6,4,0,3,1,4,4,1,2,5,6,0,2,0],[3,6,6,0,3,0,1,0,5,4,3,0,0,6,2,1] >;

C3xD4:2S3 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes_2S_3
% in TeX

G:=Group("C3xD4:2S3");
// GroupNames label

G:=SmallGroup(144,163);
// by ID

G=gap.SmallGroup(144,163);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-3,151,506,260,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<