Extensions 1→N→G→Q→1 with N=A4×C3⋊S3 and Q=C2

Direct product G=N×Q with N=A4×C3⋊S3 and Q=C2
dρLabelID
C2×A4×C3⋊S354C2xA4xC3:S3432,764

Semidirect products G=N:Q with N=A4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C3⋊S3)⋊1C2 = C3⋊S3×S4φ: C2/C1C2 ⊆ Out A4×C3⋊S336(A4xC3:S3):1C2432,746
(A4×C3⋊S3)⋊2C2 = C6210D6φ: C2/C1C2 ⊆ Out A4×C3⋊S32412+(A4xC3:S3):2C2432,748
(A4×C3⋊S3)⋊3C2 = S32×A4φ: C2/C1C2 ⊆ Out A4×C3⋊S32412+(A4xC3:S3):3C2432,749

Non-split extensions G=N.Q with N=A4×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C3⋊S3).1C2 = C62⋊Dic3φ: C2/C1C2 ⊆ Out A4×C3⋊S32412+(A4xC3:S3).1C2432,743
(A4×C3⋊S3).2C2 = A4×C32⋊C4φ: C2/C1C2 ⊆ Out A4×C3⋊S32412+(A4xC3:S3).2C2432,744

׿
×
𝔽