direct product, metabelian, soluble, monomial, A-group
Aliases: A4×C3⋊S3, C62⋊6C6, C3⋊(S3×A4), (C3×A4)⋊5S3, C32⋊4(C2×A4), (C32×A4)⋊5C2, (C2×C6)⋊3(C3×S3), C22⋊2(C3×C3⋊S3), (C22×C3⋊S3)⋊3C3, SmallGroup(216,167)
Series: Derived ►Chief ►Lower central ►Upper central
C62 — A4×C3⋊S3 |
Generators and relations for A4×C3⋊S3
G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f2=1, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 492 in 88 conjugacy classes, 21 normal (9 characteristic)
C1, C2, C3, C3, C22, C22, S3, C6, C23, C32, C32, A4, A4, D6, C2×C6, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C2×A4, C22×S3, C33, C3×A4, C3×A4, C2×C3⋊S3, C62, C3×C3⋊S3, S3×A4, C22×C3⋊S3, C32×A4, A4×C3⋊S3
Quotients: C1, C2, C3, S3, C6, A4, C3×S3, C3⋊S3, C2×A4, C3×C3⋊S3, S3×A4, A4×C3⋊S3
Character table of A4×C3⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 3 | 9 | 27 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1-√-3 | -1+√-3 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | -1-√-3 | ζ65 | -1+√-3 | -1 | -1 | -1 | 2 | 0 | 0 | complex lifted from C3×S3 |
ρ12 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1+√-3 | -1-√-3 | ζ6 | -1-√-3 | -1+√-3 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | 2 | -1 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ13 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | -1+√-3 | ζ65 | ζ6 | -1-√-3 | ζ6 | ζ6 | ζ65 | ζ65 | -1 | 2 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ14 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ65 | ζ6 | ζ6 | -1-√-3 | ζ6 | -1+√-3 | ζ65 | -1 | -1 | 2 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1-√-3 | -1+√-3 | ζ65 | -1+√-3 | -1-√-3 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | 2 | -1 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1+√-3 | -1-√-3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | -1+√-3 | ζ6 | -1-√-3 | -1 | -1 | -1 | 2 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | -1-√-3 | ζ6 | ζ65 | -1+√-3 | ζ65 | ζ65 | ζ6 | ζ6 | -1 | 2 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ6 | ζ65 | ζ65 | -1+√-3 | ζ65 | -1-√-3 | ζ6 | -1 | -1 | 2 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 3 | -1 | 3 | -1 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | -1 | -3 | 1 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ21 | 6 | -2 | 0 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | 0 | 0 | orthogonal lifted from S3×A4 |
ρ22 | 6 | -2 | 0 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | 0 | 0 | orthogonal lifted from S3×A4 |
ρ23 | 6 | -2 | 0 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from S3×A4 |
ρ24 | 6 | -2 | 0 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | orthogonal lifted from S3×A4 |
(1 18)(2 22)(3 11)(4 29)(5 31)(6 25)(7 20)(8 13)(9 34)(10 12)(14 15)(16 17)(19 21)(23 24)(26 27)(28 30)(32 33)(35 36)
(1 16)(2 23)(3 12)(4 30)(5 32)(6 26)(7 21)(8 14)(9 35)(10 11)(13 15)(17 18)(19 20)(22 24)(25 27)(28 29)(31 33)(34 36)
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 3 2)(4 6 5)(7 9 8)(10 24 17)(11 22 18)(12 23 16)(13 20 34)(14 21 35)(15 19 36)(25 31 29)(26 32 30)(27 33 28)
(1 4 7)(2 5 8)(3 6 9)(10 27 36)(11 25 34)(12 26 35)(13 22 31)(14 23 32)(15 24 33)(16 30 21)(17 28 19)(18 29 20)
(2 3)(4 7)(5 9)(6 8)(10 24)(11 22)(12 23)(13 25)(14 26)(15 27)(19 28)(20 29)(21 30)(31 34)(32 35)(33 36)
G:=sub<Sym(36)| (1,18)(2,22)(3,11)(4,29)(5,31)(6,25)(7,20)(8,13)(9,34)(10,12)(14,15)(16,17)(19,21)(23,24)(26,27)(28,30)(32,33)(35,36), (1,16)(2,23)(3,12)(4,30)(5,32)(6,26)(7,21)(8,14)(9,35)(10,11)(13,15)(17,18)(19,20)(22,24)(25,27)(28,29)(31,33)(34,36), (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,3,2)(4,6,5)(7,9,8)(10,24,17)(11,22,18)(12,23,16)(13,20,34)(14,21,35)(15,19,36)(25,31,29)(26,32,30)(27,33,28), (1,4,7)(2,5,8)(3,6,9)(10,27,36)(11,25,34)(12,26,35)(13,22,31)(14,23,32)(15,24,33)(16,30,21)(17,28,19)(18,29,20), (2,3)(4,7)(5,9)(6,8)(10,24)(11,22)(12,23)(13,25)(14,26)(15,27)(19,28)(20,29)(21,30)(31,34)(32,35)(33,36)>;
G:=Group( (1,18)(2,22)(3,11)(4,29)(5,31)(6,25)(7,20)(8,13)(9,34)(10,12)(14,15)(16,17)(19,21)(23,24)(26,27)(28,30)(32,33)(35,36), (1,16)(2,23)(3,12)(4,30)(5,32)(6,26)(7,21)(8,14)(9,35)(10,11)(13,15)(17,18)(19,20)(22,24)(25,27)(28,29)(31,33)(34,36), (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,3,2)(4,6,5)(7,9,8)(10,24,17)(11,22,18)(12,23,16)(13,20,34)(14,21,35)(15,19,36)(25,31,29)(26,32,30)(27,33,28), (1,4,7)(2,5,8)(3,6,9)(10,27,36)(11,25,34)(12,26,35)(13,22,31)(14,23,32)(15,24,33)(16,30,21)(17,28,19)(18,29,20), (2,3)(4,7)(5,9)(6,8)(10,24)(11,22)(12,23)(13,25)(14,26)(15,27)(19,28)(20,29)(21,30)(31,34)(32,35)(33,36) );
G=PermutationGroup([[(1,18),(2,22),(3,11),(4,29),(5,31),(6,25),(7,20),(8,13),(9,34),(10,12),(14,15),(16,17),(19,21),(23,24),(26,27),(28,30),(32,33),(35,36)], [(1,16),(2,23),(3,12),(4,30),(5,32),(6,26),(7,21),(8,14),(9,35),(10,11),(13,15),(17,18),(19,20),(22,24),(25,27),(28,29),(31,33),(34,36)], [(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,3,2),(4,6,5),(7,9,8),(10,24,17),(11,22,18),(12,23,16),(13,20,34),(14,21,35),(15,19,36),(25,31,29),(26,32,30),(27,33,28)], [(1,4,7),(2,5,8),(3,6,9),(10,27,36),(11,25,34),(12,26,35),(13,22,31),(14,23,32),(15,24,33),(16,30,21),(17,28,19),(18,29,20)], [(2,3),(4,7),(5,9),(6,8),(10,24),(11,22),(12,23),(13,25),(14,26),(15,27),(19,28),(20,29),(21,30),(31,34),(32,35),(33,36)]])
A4×C3⋊S3 is a maximal subgroup of
C62⋊Dic3 C62⋊10D6 S32×A4
A4×C3⋊S3 is a maximal quotient of C3⋊Dic3.2A4
Matrix representation of A4×C3⋊S3 ►in GL7(𝔽7)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 | 1 |
0 | 0 | 0 | 0 | 6 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 1 |
0 | 0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 1 | 6 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
6 | 1 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 6 | 0 | 0 | 0 | 0 | 0 |
1 | 6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(7,GF(7))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,6,6,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,6,6,6,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[6,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,6,6,0,0,0,0,0,0,0,6,1,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;
A4×C3⋊S3 in GAP, Magma, Sage, TeX
A_4\times C_3\rtimes S_3
% in TeX
G:=Group("A4xC3:S3");
// GroupNames label
G:=SmallGroup(216,167);
// by ID
G=gap.SmallGroup(216,167);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-3,-3,170,81,1444,5189]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations
Export