Extensions 1→N→G→Q→1 with N=C6xC36 and Q=C2

Direct product G=NxQ with N=C6xC36 and Q=C2
dρLabelID
C2xC6xC36432C2xC6xC36432,400

Semidirect products G=N:Q with N=C6xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C6xC36):1C2 = C3xD18:C4φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):1C2432,134
(C6xC36):2C2 = C9xD6:C4φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):2C2432,135
(C6xC36):3C2 = C6.11D36φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):3C2432,183
(C6xC36):4C2 = C22:C4xC3xC9φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):4C2432,203
(C6xC36):5C2 = S3xC2xC36φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):5C2432,345
(C6xC36):6C2 = C6xD36φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):6C2432,343
(C6xC36):7C2 = C2xC36:S3φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):7C2432,382
(C6xC36):8C2 = C3xD36:5C2φ: C2/C1C2 ⊆ Aut C6xC36722(C6xC36):8C2432,344
(C6xC36):9C2 = C36.70D6φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):9C2432,383
(C6xC36):10C2 = D9xC2xC12φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):10C2432,342
(C6xC36):11C2 = C2xC4xC9:S3φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):11C2432,381
(C6xC36):12C2 = C18xD12φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36):12C2432,346
(C6xC36):13C2 = C9xC4oD12φ: C2/C1C2 ⊆ Aut C6xC36722(C6xC36):13C2432,347
(C6xC36):14C2 = D4xC3xC18φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):14C2432,403
(C6xC36):15C2 = C4oD4xC3xC9φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36):15C2432,409

Non-split extensions G=N.Q with N=C6xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C6xC36).1C2 = C18xC3:C8φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).1C2432,126
(C6xC36).2C2 = C3xDic9:C4φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).2C2432,129
(C6xC36).3C2 = Dic3xC36φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).3C2432,131
(C6xC36).4C2 = C9xDic3:C4φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).4C2432,132
(C6xC36).5C2 = C6.Dic18φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).5C2432,181
(C6xC36).6C2 = C4:C4xC3xC9φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).6C2432,206
(C6xC36).7C2 = C3xC4:Dic9φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).7C2432,130
(C6xC36).8C2 = C36:Dic3φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).8C2432,182
(C6xC36).9C2 = C6xDic18φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).9C2432,340
(C6xC36).10C2 = C2xC12.D9φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).10C2432,380
(C6xC36).11C2 = C3xC4.Dic9φ: C2/C1C2 ⊆ Aut C6xC36722(C6xC36).11C2432,125
(C6xC36).12C2 = C36.69D6φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36).12C2432,179
(C6xC36).13C2 = C6xC9:C8φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).13C2432,124
(C6xC36).14C2 = C12xDic9φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).14C2432,128
(C6xC36).15C2 = C2xC36.S3φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).15C2432,178
(C6xC36).16C2 = C4xC9:Dic3φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).16C2432,180
(C6xC36).17C2 = C9xC4.Dic3φ: C2/C1C2 ⊆ Aut C6xC36722(C6xC36).17C2432,127
(C6xC36).18C2 = C9xC4:Dic3φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).18C2432,133
(C6xC36).19C2 = M4(2)xC3xC9φ: C2/C1C2 ⊆ Aut C6xC36216(C6xC36).19C2432,212
(C6xC36).20C2 = C18xDic6φ: C2/C1C2 ⊆ Aut C6xC36144(C6xC36).20C2432,341
(C6xC36).21C2 = Q8xC3xC18φ: C2/C1C2 ⊆ Aut C6xC36432(C6xC36).21C2432,406

׿
x
:
Z
F
o
wr
Q
<