extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6xC36).1C2 = C18xC3:C8 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).1C2 | 432,126 |
(C6xC36).2C2 = C3xDic9:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).2C2 | 432,129 |
(C6xC36).3C2 = Dic3xC36 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).3C2 | 432,131 |
(C6xC36).4C2 = C9xDic3:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).4C2 | 432,132 |
(C6xC36).5C2 = C6.Dic18 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).5C2 | 432,181 |
(C6xC36).6C2 = C4:C4xC3xC9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).6C2 | 432,206 |
(C6xC36).7C2 = C3xC4:Dic9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).7C2 | 432,130 |
(C6xC36).8C2 = C36:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).8C2 | 432,182 |
(C6xC36).9C2 = C6xDic18 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).9C2 | 432,340 |
(C6xC36).10C2 = C2xC12.D9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).10C2 | 432,380 |
(C6xC36).11C2 = C3xC4.Dic9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 72 | 2 | (C6xC36).11C2 | 432,125 |
(C6xC36).12C2 = C36.69D6 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 216 | | (C6xC36).12C2 | 432,179 |
(C6xC36).13C2 = C6xC9:C8 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).13C2 | 432,124 |
(C6xC36).14C2 = C12xDic9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).14C2 | 432,128 |
(C6xC36).15C2 = C2xC36.S3 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).15C2 | 432,178 |
(C6xC36).16C2 = C4xC9:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).16C2 | 432,180 |
(C6xC36).17C2 = C9xC4.Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 72 | 2 | (C6xC36).17C2 | 432,127 |
(C6xC36).18C2 = C9xC4:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).18C2 | 432,133 |
(C6xC36).19C2 = M4(2)xC3xC9 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 216 | | (C6xC36).19C2 | 432,212 |
(C6xC36).20C2 = C18xDic6 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 144 | | (C6xC36).20C2 | 432,341 |
(C6xC36).21C2 = Q8xC3xC18 | φ: C2/C1 → C2 ⊆ Aut C6xC36 | 432 | | (C6xC36).21C2 | 432,406 |