extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×He3)⋊1C2 = C62.21D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):1C2 | 432,141 |
(C2×C4×He3)⋊2C2 = C62.31D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):2C2 | 432,189 |
(C2×C4×He3)⋊3C2 = C22⋊C4×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):3C2 | 432,204 |
(C2×C4×He3)⋊4C2 = C62.36D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3):4C2 | 432,351 |
(C2×C4×He3)⋊5C2 = C62.47D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3):5C2 | 432,387 |
(C2×C4×He3)⋊6C2 = C2×He3⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):6C2 | 432,350 |
(C2×C4×He3)⋊7C2 = C2×He3⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):7C2 | 432,386 |
(C2×C4×He3)⋊8C2 = C2×C4×C32⋊C6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):8C2 | 432,349 |
(C2×C4×He3)⋊9C2 = C2×C4×He3⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):9C2 | 432,385 |
(C2×C4×He3)⋊10C2 = C2×D4×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | | (C2xC4xHe3):10C2 | 432,404 |
(C2×C4×He3)⋊11C2 = C4○D4×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3):11C2 | 432,410 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×He3).1C2 = C62.19D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).1C2 | 432,139 |
(C2×C4×He3).2C2 = C62.29D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).2C2 | 432,187 |
(C2×C4×He3).3C2 = C4⋊C4×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).3C2 | 432,207 |
(C2×C4×He3).4C2 = He3⋊7M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3).4C2 | 432,137 |
(C2×C4×He3).5C2 = He3⋊8M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3).5C2 | 432,185 |
(C2×C4×He3).6C2 = C62.20D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).6C2 | 432,140 |
(C2×C4×He3).7C2 = C62.30D6 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).7C2 | 432,188 |
(C2×C4×He3).8C2 = C2×He3⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).8C2 | 432,348 |
(C2×C4×He3).9C2 = C2×He3⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).9C2 | 432,384 |
(C2×C4×He3).10C2 = C2×He3⋊3C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).10C2 | 432,136 |
(C2×C4×He3).11C2 = C4×C32⋊C12 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).11C2 | 432,138 |
(C2×C4×He3).12C2 = C2×He3⋊4C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).12C2 | 432,184 |
(C2×C4×He3).13C2 = C4×He3⋊3C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).13C2 | 432,186 |
(C2×C4×He3).14C2 = M4(2)×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 72 | 6 | (C2xC4xHe3).14C2 | 432,213 |
(C2×C4×He3).15C2 = C2×Q8×He3 | φ: C2/C1 → C2 ⊆ Out C2×C4×He3 | 144 | | (C2xC4xHe3).15C2 | 432,407 |
(C2×C4×He3).16C2 = C42×He3 | φ: trivial image | 144 | | (C2xC4xHe3).16C2 | 432,201 |
(C2×C4×He3).17C2 = C2×C8×He3 | φ: trivial image | 144 | | (C2xC4xHe3).17C2 | 432,210 |