Copied to
clipboard

G = C2xC4xHe3order 216 = 23·33

Direct product of C2xC4 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C2xC4xHe3, C62.4C6, C6.6C62, (C6xC12):C3, (C3xC12):4C6, (C3xC6):3C12, C3.1(C6xC12), C6.4(C3xC12), C22.(C2xHe3), C12.12(C3xC6), C32:6(C2xC12), (C2xC12).1C32, C2.1(C22xHe3), (C22xHe3).3C2, (C2xHe3).16C22, (C3xC6).11(C2xC6), (C2xC6).10(C3xC6), SmallGroup(216,74)

Series: Derived Chief Lower central Upper central

C1C3 — C2xC4xHe3
C1C3C6C3xC6C2xHe3C4xHe3 — C2xC4xHe3
C1C3 — C2xC4xHe3
C1C2xC12 — C2xC4xHe3

Generators and relations for C2xC4xHe3
 G = < a,b,c,d,e | a2=b4=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 152 in 88 conjugacy classes, 56 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2xC4, C32, C12, C12, C2xC6, C2xC6, C3xC6, C2xC12, C2xC12, He3, C3xC12, C62, C2xHe3, C2xHe3, C6xC12, C4xHe3, C22xHe3, C2xC4xHe3
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C32, C12, C2xC6, C3xC6, C2xC12, He3, C3xC12, C62, C2xHe3, C6xC12, C4xHe3, C22xHe3, C2xC4xHe3

Smallest permutation representation of C2xC4xHe3
On 72 points
Generators in S72
(1 8)(2 5)(3 6)(4 7)(9 22)(10 23)(11 24)(12 21)(13 26)(14 27)(15 28)(16 25)(17 48)(18 45)(19 46)(20 47)(29 69)(30 70)(31 71)(32 72)(33 53)(34 54)(35 55)(36 56)(37 64)(38 61)(39 62)(40 63)(41 68)(42 65)(43 66)(44 67)(49 58)(50 59)(51 60)(52 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 42 71)(2 43 72)(3 44 69)(4 41 70)(5 66 32)(6 67 29)(7 68 30)(8 65 31)(9 25 36)(10 26 33)(11 27 34)(12 28 35)(13 53 23)(14 54 24)(15 55 21)(16 56 22)(17 57 38)(18 58 39)(19 59 40)(20 60 37)(45 49 62)(46 50 63)(47 51 64)(48 52 61)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 45 26)(6 46 27)(7 47 28)(8 48 25)(9 31 61)(10 32 62)(11 29 63)(12 30 64)(21 70 37)(22 71 38)(23 72 39)(24 69 40)(33 66 49)(34 67 50)(35 68 51)(36 65 52)(41 60 55)(42 57 56)(43 58 53)(44 59 54)
(1 42 38)(2 43 39)(3 44 40)(4 41 37)(5 66 62)(6 67 63)(7 68 64)(8 65 61)(9 48 52)(10 45 49)(11 46 50)(12 47 51)(13 53 72)(14 54 69)(15 55 70)(16 56 71)(17 57 22)(18 58 23)(19 59 24)(20 60 21)(25 36 31)(26 33 32)(27 34 29)(28 35 30)

G:=sub<Sym(72)| (1,8)(2,5)(3,6)(4,7)(9,22)(10,23)(11,24)(12,21)(13,26)(14,27)(15,28)(16,25)(17,48)(18,45)(19,46)(20,47)(29,69)(30,70)(31,71)(32,72)(33,53)(34,54)(35,55)(36,56)(37,64)(38,61)(39,62)(40,63)(41,68)(42,65)(43,66)(44,67)(49,58)(50,59)(51,60)(52,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,42,71)(2,43,72)(3,44,69)(4,41,70)(5,66,32)(6,67,29)(7,68,30)(8,65,31)(9,25,36)(10,26,33)(11,27,34)(12,28,35)(13,53,23)(14,54,24)(15,55,21)(16,56,22)(17,57,38)(18,58,39)(19,59,40)(20,60,37)(45,49,62)(46,50,63)(47,51,64)(48,52,61), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,45,26)(6,46,27)(7,47,28)(8,48,25)(9,31,61)(10,32,62)(11,29,63)(12,30,64)(21,70,37)(22,71,38)(23,72,39)(24,69,40)(33,66,49)(34,67,50)(35,68,51)(36,65,52)(41,60,55)(42,57,56)(43,58,53)(44,59,54), (1,42,38)(2,43,39)(3,44,40)(4,41,37)(5,66,62)(6,67,63)(7,68,64)(8,65,61)(9,48,52)(10,45,49)(11,46,50)(12,47,51)(13,53,72)(14,54,69)(15,55,70)(16,56,71)(17,57,22)(18,58,23)(19,59,24)(20,60,21)(25,36,31)(26,33,32)(27,34,29)(28,35,30)>;

G:=Group( (1,8)(2,5)(3,6)(4,7)(9,22)(10,23)(11,24)(12,21)(13,26)(14,27)(15,28)(16,25)(17,48)(18,45)(19,46)(20,47)(29,69)(30,70)(31,71)(32,72)(33,53)(34,54)(35,55)(36,56)(37,64)(38,61)(39,62)(40,63)(41,68)(42,65)(43,66)(44,67)(49,58)(50,59)(51,60)(52,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,42,71)(2,43,72)(3,44,69)(4,41,70)(5,66,32)(6,67,29)(7,68,30)(8,65,31)(9,25,36)(10,26,33)(11,27,34)(12,28,35)(13,53,23)(14,54,24)(15,55,21)(16,56,22)(17,57,38)(18,58,39)(19,59,40)(20,60,37)(45,49,62)(46,50,63)(47,51,64)(48,52,61), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,45,26)(6,46,27)(7,47,28)(8,48,25)(9,31,61)(10,32,62)(11,29,63)(12,30,64)(21,70,37)(22,71,38)(23,72,39)(24,69,40)(33,66,49)(34,67,50)(35,68,51)(36,65,52)(41,60,55)(42,57,56)(43,58,53)(44,59,54), (1,42,38)(2,43,39)(3,44,40)(4,41,37)(5,66,62)(6,67,63)(7,68,64)(8,65,61)(9,48,52)(10,45,49)(11,46,50)(12,47,51)(13,53,72)(14,54,69)(15,55,70)(16,56,71)(17,57,22)(18,58,23)(19,59,24)(20,60,21)(25,36,31)(26,33,32)(27,34,29)(28,35,30) );

G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,22),(10,23),(11,24),(12,21),(13,26),(14,27),(15,28),(16,25),(17,48),(18,45),(19,46),(20,47),(29,69),(30,70),(31,71),(32,72),(33,53),(34,54),(35,55),(36,56),(37,64),(38,61),(39,62),(40,63),(41,68),(42,65),(43,66),(44,67),(49,58),(50,59),(51,60),(52,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,42,71),(2,43,72),(3,44,69),(4,41,70),(5,66,32),(6,67,29),(7,68,30),(8,65,31),(9,25,36),(10,26,33),(11,27,34),(12,28,35),(13,53,23),(14,54,24),(15,55,21),(16,56,22),(17,57,38),(18,58,39),(19,59,40),(20,60,37),(45,49,62),(46,50,63),(47,51,64),(48,52,61)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,45,26),(6,46,27),(7,47,28),(8,48,25),(9,31,61),(10,32,62),(11,29,63),(12,30,64),(21,70,37),(22,71,38),(23,72,39),(24,69,40),(33,66,49),(34,67,50),(35,68,51),(36,65,52),(41,60,55),(42,57,56),(43,58,53),(44,59,54)], [(1,42,38),(2,43,39),(3,44,40),(4,41,37),(5,66,62),(6,67,63),(7,68,64),(8,65,61),(9,48,52),(10,45,49),(11,46,50),(12,47,51),(13,53,72),(14,54,69),(15,55,70),(16,56,71),(17,57,22),(18,58,23),(19,59,24),(20,60,21),(25,36,31),(26,33,32),(27,34,29),(28,35,30)]])

C2xC4xHe3 is a maximal subgroup of
He3:7M4(2)  C62.19D6  C62.20D6  C62.21D6  He3:8M4(2)  C62.29D6  C62.30D6  C62.31D6  C62.36D6  C62.47D6

88 conjugacy classes

class 1 2A2B2C3A3B3C···3J4A4B4C4D6A···6F6G···6AD12A···12H12I···12AN
order1222333···344446···66···612···1212···12
size1111113···311111···13···31···13···3

88 irreducible representations

dim111111113333
type+++
imageC1C2C2C3C4C6C6C12He3C2xHe3C2xHe3C4xHe3
kernelC2xC4xHe3C4xHe3C22xHe3C6xC12C2xHe3C3xC12C62C3xC6C2xC4C4C22C2
# reps12184168322428

Matrix representation of C2xC4xHe3 in GL4(F13) generated by

12000
01200
00120
00012
,
1000
0800
0080
0008
,
1000
0010
0001
0100
,
1000
0300
0030
0003
,
3000
0090
0003
0100
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],[1,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[3,0,0,0,0,0,0,1,0,9,0,0,0,0,3,0] >;

C2xC4xHe3 in GAP, Magma, Sage, TeX

C_2\times C_4\times {\rm He}_3
% in TeX

G:=Group("C2xC4xHe3");
// GroupNames label

G:=SmallGroup(216,74);
// by ID

G=gap.SmallGroup(216,74);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-3,216,519]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<