d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3:S3xC22xC6 | 144 | C3:S3xC2^2xC6 | 432,773 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC6xC3:S3):1C2 = C6xC3:D12 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3):1C2 | 432,656 | |
(C2xC6xC3:S3):2C2 = C3xDic3:D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 24 | 4 | (C2xC6xC3:S3):2C2 | 432,659 |
(C2xC6xC3:S3):3C2 = C2xC33:6D4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 144 | (C2xC6xC3:S3):3C2 | 432,680 | |
(C2xC6xC3:S3):4C2 = C2xC33:8D4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 72 | (C2xC6xC3:S3):4C2 | 432,682 | |
(C2xC6xC3:S3):5C2 = C3:S3xC3:D4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 72 | (C2xC6xC3:S3):5C2 | 432,685 | |
(C2xC6xC3:S3):6C2 = C2xC33:9D4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3):6C2 | 432,694 | |
(C2xC6xC3:S3):7C2 = C62:24D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 24 | 4 | (C2xC6xC3:S3):7C2 | 432,696 |
(C2xC6xC3:S3):8C2 = C6xC12:S3 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 144 | (C2xC6xC3:S3):8C2 | 432,712 | |
(C2xC6xC3:S3):9C2 = C3xD4xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 72 | (C2xC6xC3:S3):9C2 | 432,714 | |
(C2xC6xC3:S3):10C2 = C6xC32:7D4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 72 | (C2xC6xC3:S3):10C2 | 432,719 | |
(C2xC6xC3:S3):11C2 = S32xC2xC6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3):11C2 | 432,767 | |
(C2xC6xC3:S3):12C2 = C22xS3xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 72 | (C2xC6xC3:S3):12C2 | 432,768 | |
(C2xC6xC3:S3):13C2 = C22xC32:4D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3):13C2 | 432,769 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC6xC3:S3).1C2 = C3xC6.D12 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).1C2 | 432,427 | |
(C2xC6xC3:S3).2C2 = C62.78D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 144 | (C2xC6xC3:S3).2C2 | 432,450 | |
(C2xC6xC3:S3).3C2 = C62.84D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).3C2 | 432,461 | |
(C2xC6xC3:S3).4C2 = C3xC6.11D12 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 144 | (C2xC6xC3:S3).4C2 | 432,490 | |
(C2xC6xC3:S3).5C2 = C3xC62:C4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 24 | 4 | (C2xC6xC3:S3).5C2 | 432,634 |
(C2xC6xC3:S3).6C2 = C62:11Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 24 | 4 | (C2xC6xC3:S3).6C2 | 432,641 |
(C2xC6xC3:S3).7C2 = C6xC6.D6 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).7C2 | 432,654 | |
(C2xC6xC3:S3).8C2 = C2xDic3xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 144 | (C2xC6xC3:S3).8C2 | 432,677 | |
(C2xC6xC3:S3).9C2 = C2xC33:9(C2xC4) | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).9C2 | 432,692 | |
(C2xC6xC3:S3).10C2 = C2xC6xC32:C4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).10C2 | 432,765 | |
(C2xC6xC3:S3).11C2 = C22xC33:C4 | φ: C2/C1 → C2 ⊆ Out C2xC6xC3:S3 | 48 | (C2xC6xC3:S3).11C2 | 432,766 | |
(C2xC6xC3:S3).12C2 = C3:S3xC2xC12 | φ: trivial image | 144 | (C2xC6xC3:S3).12C2 | 432,711 |