Copied to
clipboard

G = C2×Dic3×C3⋊S3order 432 = 24·33

Direct product of C2, Dic3 and C3⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×Dic3×C3⋊S3, C62.92D6, C61(S3×Dic3), (C6×Dic3)⋊7S3, (C3×Dic3)⋊15D6, C3313(C22×C4), C335C410C22, (C3×C62).26C22, (C32×C6).55C23, C329(C22×Dic3), (C32×Dic3)⋊20C22, C63(C4×C3⋊S3), (C6×C3⋊S3)⋊8C4, C6.65(C2×S32), (C3×C6)⋊6(C4×S3), (C2×C6).39S32, C32(C2×S3×Dic3), C3212(S3×C2×C4), (C32×C6)⋊7(C2×C4), (C2×C3⋊S3).54D6, (Dic3×C3×C6)⋊13C2, (C3×C6)⋊8(C2×Dic3), (C2×C335C4)⋊7C2, (C22×C3⋊S3).9S3, C6.18(C22×C3⋊S3), C22.12(S3×C3⋊S3), (C6×C3⋊S3).56C22, (C3×C6).110(C22×S3), C34(C2×C4×C3⋊S3), C2.3(C2×S3×C3⋊S3), (C2×C6×C3⋊S3).8C2, (C3×C3⋊S3)⋊10(C2×C4), (C2×C6).21(C2×C3⋊S3), SmallGroup(432,677)

Series: Derived Chief Lower central Upper central

C1C33 — C2×Dic3×C3⋊S3
C1C3C32C33C32×C6C32×Dic3Dic3×C3⋊S3 — C2×Dic3×C3⋊S3
C33 — C2×Dic3×C3⋊S3
C1C22

Generators and relations for C2×Dic3×C3⋊S3
 G = < a,b,c,d,e,f | a2=b6=d3=e3=f2=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 1688 in 388 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C23, C32, C32, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22×C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C62, C62, C62, S3×C2×C4, C22×Dic3, C3×C3⋊S3, C32×C6, C32×C6, S3×Dic3, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C22×C3⋊S3, C32×Dic3, C335C4, C6×C3⋊S3, C3×C62, C2×S3×Dic3, C2×C4×C3⋊S3, Dic3×C3⋊S3, Dic3×C3×C6, C2×C335C4, C2×C6×C3⋊S3, C2×Dic3×C3⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C3⋊S3, C4×S3, C2×Dic3, C22×S3, S32, C2×C3⋊S3, S3×C2×C4, C22×Dic3, S3×Dic3, C4×C3⋊S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, C2×S3×Dic3, C2×C4×C3⋊S3, Dic3×C3⋊S3, C2×S3×C3⋊S3, C2×Dic3×C3⋊S3

Smallest permutation representation of C2×Dic3×C3⋊S3
On 144 points
Generators in S144
(1 35)(2 36)(3 31)(4 32)(5 33)(6 34)(7 128)(8 129)(9 130)(10 131)(11 132)(12 127)(13 28)(14 29)(15 30)(16 25)(17 26)(18 27)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 78)(56 73)(57 74)(58 75)(59 76)(60 77)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 88 4 85)(2 87 5 90)(3 86 6 89)(7 78 10 75)(8 77 11 74)(9 76 12 73)(13 80 16 83)(14 79 17 82)(15 84 18 81)(19 95 22 92)(20 94 23 91)(21 93 24 96)(25 101 28 98)(26 100 29 97)(27 99 30 102)(31 104 34 107)(32 103 35 106)(33 108 36 105)(37 113 40 110)(38 112 41 109)(39 111 42 114)(43 119 46 116)(44 118 47 115)(45 117 48 120)(49 122 52 125)(50 121 53 124)(51 126 54 123)(55 131 58 128)(56 130 59 127)(57 129 60 132)(61 137 64 134)(62 136 65 133)(63 135 66 138)(67 140 70 143)(68 139 71 142)(69 144 72 141)
(1 19 13)(2 20 14)(3 21 15)(4 22 16)(5 23 17)(6 24 18)(7 139 137)(8 140 138)(9 141 133)(10 142 134)(11 143 135)(12 144 136)(25 32 40)(26 33 41)(27 34 42)(28 35 37)(29 36 38)(30 31 39)(43 58 50)(44 59 51)(45 60 52)(46 55 53)(47 56 54)(48 57 49)(61 75 68)(62 76 69)(63 77 70)(64 78 71)(65 73 72)(66 74 67)(79 87 94)(80 88 95)(81 89 96)(82 90 91)(83 85 92)(84 86 93)(97 105 112)(98 106 113)(99 107 114)(100 108 109)(101 103 110)(102 104 111)(115 130 123)(116 131 124)(117 132 125)(118 127 126)(119 128 121)(120 129 122)
(1 17 21)(2 18 22)(3 13 23)(4 14 24)(5 15 19)(6 16 20)(7 135 141)(8 136 142)(9 137 143)(10 138 144)(11 133 139)(12 134 140)(25 38 34)(26 39 35)(27 40 36)(28 41 31)(29 42 32)(30 37 33)(43 52 56)(44 53 57)(45 54 58)(46 49 59)(47 50 60)(48 51 55)(61 70 73)(62 71 74)(63 72 75)(64 67 76)(65 68 77)(66 69 78)(79 96 85)(80 91 86)(81 92 87)(82 93 88)(83 94 89)(84 95 90)(97 114 103)(98 109 104)(99 110 105)(100 111 106)(101 112 107)(102 113 108)(115 121 132)(116 122 127)(117 123 128)(118 124 129)(119 125 130)(120 126 131)
(1 50)(2 51)(3 52)(4 53)(5 54)(6 49)(7 113)(8 114)(9 109)(10 110)(11 111)(12 112)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 58)(20 59)(21 60)(22 55)(23 56)(24 57)(25 64)(26 65)(27 66)(28 61)(29 62)(30 63)(31 70)(32 71)(33 72)(34 67)(35 68)(36 69)(37 75)(38 76)(39 77)(40 78)(41 73)(42 74)(79 118)(80 119)(81 120)(82 115)(83 116)(84 117)(85 124)(86 125)(87 126)(88 121)(89 122)(90 123)(91 130)(92 131)(93 132)(94 127)(95 128)(96 129)(97 136)(98 137)(99 138)(100 133)(101 134)(102 135)(103 142)(104 143)(105 144)(106 139)(107 140)(108 141)

G:=sub<Sym(144)| (1,35)(2,36)(3,31)(4,32)(5,33)(6,34)(7,128)(8,129)(9,130)(10,131)(11,132)(12,127)(13,28)(14,29)(15,30)(16,25)(17,26)(18,27)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,78)(56,73)(57,74)(58,75)(59,76)(60,77)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,88,4,85)(2,87,5,90)(3,86,6,89)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,80,16,83)(14,79,17,82)(15,84,18,81)(19,95,22,92)(20,94,23,91)(21,93,24,96)(25,101,28,98)(26,100,29,97)(27,99,30,102)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,113,40,110)(38,112,41,109)(39,111,42,114)(43,119,46,116)(44,118,47,115)(45,117,48,120)(49,122,52,125)(50,121,53,124)(51,126,54,123)(55,131,58,128)(56,130,59,127)(57,129,60,132)(61,137,64,134)(62,136,65,133)(63,135,66,138)(67,140,70,143)(68,139,71,142)(69,144,72,141), (1,19,13)(2,20,14)(3,21,15)(4,22,16)(5,23,17)(6,24,18)(7,139,137)(8,140,138)(9,141,133)(10,142,134)(11,143,135)(12,144,136)(25,32,40)(26,33,41)(27,34,42)(28,35,37)(29,36,38)(30,31,39)(43,58,50)(44,59,51)(45,60,52)(46,55,53)(47,56,54)(48,57,49)(61,75,68)(62,76,69)(63,77,70)(64,78,71)(65,73,72)(66,74,67)(79,87,94)(80,88,95)(81,89,96)(82,90,91)(83,85,92)(84,86,93)(97,105,112)(98,106,113)(99,107,114)(100,108,109)(101,103,110)(102,104,111)(115,130,123)(116,131,124)(117,132,125)(118,127,126)(119,128,121)(120,129,122), (1,17,21)(2,18,22)(3,13,23)(4,14,24)(5,15,19)(6,16,20)(7,135,141)(8,136,142)(9,137,143)(10,138,144)(11,133,139)(12,134,140)(25,38,34)(26,39,35)(27,40,36)(28,41,31)(29,42,32)(30,37,33)(43,52,56)(44,53,57)(45,54,58)(46,49,59)(47,50,60)(48,51,55)(61,70,73)(62,71,74)(63,72,75)(64,67,76)(65,68,77)(66,69,78)(79,96,85)(80,91,86)(81,92,87)(82,93,88)(83,94,89)(84,95,90)(97,114,103)(98,109,104)(99,110,105)(100,111,106)(101,112,107)(102,113,108)(115,121,132)(116,122,127)(117,123,128)(118,124,129)(119,125,130)(120,126,131), (1,50)(2,51)(3,52)(4,53)(5,54)(6,49)(7,113)(8,114)(9,109)(10,110)(11,111)(12,112)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,58)(20,59)(21,60)(22,55)(23,56)(24,57)(25,64)(26,65)(27,66)(28,61)(29,62)(30,63)(31,70)(32,71)(33,72)(34,67)(35,68)(36,69)(37,75)(38,76)(39,77)(40,78)(41,73)(42,74)(79,118)(80,119)(81,120)(82,115)(83,116)(84,117)(85,124)(86,125)(87,126)(88,121)(89,122)(90,123)(91,130)(92,131)(93,132)(94,127)(95,128)(96,129)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141)>;

G:=Group( (1,35)(2,36)(3,31)(4,32)(5,33)(6,34)(7,128)(8,129)(9,130)(10,131)(11,132)(12,127)(13,28)(14,29)(15,30)(16,25)(17,26)(18,27)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,78)(56,73)(57,74)(58,75)(59,76)(60,77)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,88,4,85)(2,87,5,90)(3,86,6,89)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,80,16,83)(14,79,17,82)(15,84,18,81)(19,95,22,92)(20,94,23,91)(21,93,24,96)(25,101,28,98)(26,100,29,97)(27,99,30,102)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,113,40,110)(38,112,41,109)(39,111,42,114)(43,119,46,116)(44,118,47,115)(45,117,48,120)(49,122,52,125)(50,121,53,124)(51,126,54,123)(55,131,58,128)(56,130,59,127)(57,129,60,132)(61,137,64,134)(62,136,65,133)(63,135,66,138)(67,140,70,143)(68,139,71,142)(69,144,72,141), (1,19,13)(2,20,14)(3,21,15)(4,22,16)(5,23,17)(6,24,18)(7,139,137)(8,140,138)(9,141,133)(10,142,134)(11,143,135)(12,144,136)(25,32,40)(26,33,41)(27,34,42)(28,35,37)(29,36,38)(30,31,39)(43,58,50)(44,59,51)(45,60,52)(46,55,53)(47,56,54)(48,57,49)(61,75,68)(62,76,69)(63,77,70)(64,78,71)(65,73,72)(66,74,67)(79,87,94)(80,88,95)(81,89,96)(82,90,91)(83,85,92)(84,86,93)(97,105,112)(98,106,113)(99,107,114)(100,108,109)(101,103,110)(102,104,111)(115,130,123)(116,131,124)(117,132,125)(118,127,126)(119,128,121)(120,129,122), (1,17,21)(2,18,22)(3,13,23)(4,14,24)(5,15,19)(6,16,20)(7,135,141)(8,136,142)(9,137,143)(10,138,144)(11,133,139)(12,134,140)(25,38,34)(26,39,35)(27,40,36)(28,41,31)(29,42,32)(30,37,33)(43,52,56)(44,53,57)(45,54,58)(46,49,59)(47,50,60)(48,51,55)(61,70,73)(62,71,74)(63,72,75)(64,67,76)(65,68,77)(66,69,78)(79,96,85)(80,91,86)(81,92,87)(82,93,88)(83,94,89)(84,95,90)(97,114,103)(98,109,104)(99,110,105)(100,111,106)(101,112,107)(102,113,108)(115,121,132)(116,122,127)(117,123,128)(118,124,129)(119,125,130)(120,126,131), (1,50)(2,51)(3,52)(4,53)(5,54)(6,49)(7,113)(8,114)(9,109)(10,110)(11,111)(12,112)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,58)(20,59)(21,60)(22,55)(23,56)(24,57)(25,64)(26,65)(27,66)(28,61)(29,62)(30,63)(31,70)(32,71)(33,72)(34,67)(35,68)(36,69)(37,75)(38,76)(39,77)(40,78)(41,73)(42,74)(79,118)(80,119)(81,120)(82,115)(83,116)(84,117)(85,124)(86,125)(87,126)(88,121)(89,122)(90,123)(91,130)(92,131)(93,132)(94,127)(95,128)(96,129)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141) );

G=PermutationGroup([[(1,35),(2,36),(3,31),(4,32),(5,33),(6,34),(7,128),(8,129),(9,130),(10,131),(11,132),(12,127),(13,28),(14,29),(15,30),(16,25),(17,26),(18,27),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,78),(56,73),(57,74),(58,75),(59,76),(60,77),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,88,4,85),(2,87,5,90),(3,86,6,89),(7,78,10,75),(8,77,11,74),(9,76,12,73),(13,80,16,83),(14,79,17,82),(15,84,18,81),(19,95,22,92),(20,94,23,91),(21,93,24,96),(25,101,28,98),(26,100,29,97),(27,99,30,102),(31,104,34,107),(32,103,35,106),(33,108,36,105),(37,113,40,110),(38,112,41,109),(39,111,42,114),(43,119,46,116),(44,118,47,115),(45,117,48,120),(49,122,52,125),(50,121,53,124),(51,126,54,123),(55,131,58,128),(56,130,59,127),(57,129,60,132),(61,137,64,134),(62,136,65,133),(63,135,66,138),(67,140,70,143),(68,139,71,142),(69,144,72,141)], [(1,19,13),(2,20,14),(3,21,15),(4,22,16),(5,23,17),(6,24,18),(7,139,137),(8,140,138),(9,141,133),(10,142,134),(11,143,135),(12,144,136),(25,32,40),(26,33,41),(27,34,42),(28,35,37),(29,36,38),(30,31,39),(43,58,50),(44,59,51),(45,60,52),(46,55,53),(47,56,54),(48,57,49),(61,75,68),(62,76,69),(63,77,70),(64,78,71),(65,73,72),(66,74,67),(79,87,94),(80,88,95),(81,89,96),(82,90,91),(83,85,92),(84,86,93),(97,105,112),(98,106,113),(99,107,114),(100,108,109),(101,103,110),(102,104,111),(115,130,123),(116,131,124),(117,132,125),(118,127,126),(119,128,121),(120,129,122)], [(1,17,21),(2,18,22),(3,13,23),(4,14,24),(5,15,19),(6,16,20),(7,135,141),(8,136,142),(9,137,143),(10,138,144),(11,133,139),(12,134,140),(25,38,34),(26,39,35),(27,40,36),(28,41,31),(29,42,32),(30,37,33),(43,52,56),(44,53,57),(45,54,58),(46,49,59),(47,50,60),(48,51,55),(61,70,73),(62,71,74),(63,72,75),(64,67,76),(65,68,77),(66,69,78),(79,96,85),(80,91,86),(81,92,87),(82,93,88),(83,94,89),(84,95,90),(97,114,103),(98,109,104),(99,110,105),(100,111,106),(101,112,107),(102,113,108),(115,121,132),(116,122,127),(117,123,128),(118,124,129),(119,125,130),(120,126,131)], [(1,50),(2,51),(3,52),(4,53),(5,54),(6,49),(7,113),(8,114),(9,109),(10,110),(11,111),(12,112),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,58),(20,59),(21,60),(22,55),(23,56),(24,57),(25,64),(26,65),(27,66),(28,61),(29,62),(30,63),(31,70),(32,71),(33,72),(34,67),(35,68),(36,69),(37,75),(38,76),(39,77),(40,78),(41,73),(42,74),(79,118),(80,119),(81,120),(82,115),(83,116),(84,117),(85,124),(86,125),(87,126),(88,121),(89,122),(90,123),(91,130),(92,131),(93,132),(94,127),(95,128),(96,129),(97,136),(98,137),(99,138),(100,133),(101,134),(102,135),(103,142),(104,143),(105,144),(106,139),(107,140),(108,141)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I4A4B4C4D4E4F4G4H6A···6O6P···6AA6AB6AC6AD6AE12A···12P
order122222223···33333444444446···66···6666612···12
size111199992···244443333272727272···24···4181818186···6

72 irreducible representations

dim1111112222222444
type++++++++-+++-+
imageC1C2C2C2C2C4S3S3D6Dic3D6D6C4×S3S32S3×Dic3C2×S32
kernelC2×Dic3×C3⋊S3Dic3×C3⋊S3Dic3×C3×C6C2×C335C4C2×C6×C3⋊S3C6×C3⋊S3C6×Dic3C22×C3⋊S3C3×Dic3C2×C3⋊S3C2×C3⋊S3C62C3×C6C2×C6C6C6
# reps14111841842516484

Matrix representation of C2×Dic3×C3⋊S3 in GL8(𝔽13)

10000000
01000000
001200000
000120000
000012000
000001200
00000010
00000001
,
10000000
01000000
001200000
000120000
00001000
00000100
0000001212
00000010
,
120000000
012000000
00800000
00080000
000012000
000001200
00000010
0000001212
,
012000000
112000000
00100000
00010000
00001000
00000100
00000010
00000001
,
121000000
120000000
001210000
001200000
00000100
0000121200
00000010
00000001
,
1010000000
73000000
00010000
00100000
000001200
000012000
00000010
00000001

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[10,7,0,0,0,0,0,0,10,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C2×Dic3×C3⋊S3 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_3\times C_3\rtimes S_3
% in TeX

G:=Group("C2xDic3xC3:S3");
// GroupNames label

G:=SmallGroup(432,677);
// by ID

G=gap.SmallGroup(432,677);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^6=d^3=e^3=f^2=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽