Extensions 1→N→G→Q→1 with N=D4xC3xC9 and Q=C2

Direct product G=NxQ with N=D4xC3xC9 and Q=C2
dρLabelID
D4xC3xC18216D4xC3xC18432,403

Semidirect products G=N:Q with N=D4xC3xC9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC3xC9):1C2 = C3xD4:D9φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):1C2432,149
(D4xC3xC9):2C2 = C36.18D6φ: C2/C1C2 ⊆ Out D4xC3xC9216(D4xC3xC9):2C2432,191
(D4xC3xC9):3C2 = C3xD4xD9φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):3C2432,356
(D4xC3xC9):4C2 = C3xD4:2D9φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):4C2432,357
(D4xC3xC9):5C2 = D4xC9:S3φ: C2/C1C2 ⊆ Out D4xC3xC9108(D4xC3xC9):5C2432,388
(D4xC3xC9):6C2 = C36.27D6φ: C2/C1C2 ⊆ Out D4xC3xC9216(D4xC3xC9):6C2432,389
(D4xC3xC9):7C2 = C9xD4:S3φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):7C2432,150
(D4xC3xC9):8C2 = D8xC3xC9φ: C2/C1C2 ⊆ Out D4xC3xC9216(D4xC3xC9):8C2432,215
(D4xC3xC9):9C2 = S3xD4xC9φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):9C2432,358
(D4xC3xC9):10C2 = C9xD4:2S3φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9):10C2432,359
(D4xC3xC9):11C2 = C4oD4xC3xC9φ: trivial image216(D4xC3xC9):11C2432,409

Non-split extensions G=N.Q with N=D4xC3xC9 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC3xC9).1C2 = C3xD4.D9φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9).1C2432,148
(D4xC3xC9).2C2 = C36.17D6φ: C2/C1C2 ⊆ Out D4xC3xC9216(D4xC3xC9).2C2432,190
(D4xC3xC9).3C2 = C9xD4.S3φ: C2/C1C2 ⊆ Out D4xC3xC9724(D4xC3xC9).3C2432,151
(D4xC3xC9).4C2 = SD16xC3xC9φ: C2/C1C2 ⊆ Out D4xC3xC9216(D4xC3xC9).4C2432,218

׿
x
:
Z
F
o
wr
Q
<