Extensions 1→N→G→Q→1 with N=D4×He3 and Q=C2

Direct product G=N×Q with N=D4×He3 and Q=C2
dρLabelID
C2×D4×He372C2xD4xHe3432,404

Semidirect products G=N:Q with N=D4×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×He3)⋊1C2 = He36D8φ: C2/C1C2 ⊆ Out D4×He37212+(D4xHe3):1C2432,153
(D4×He3)⋊2C2 = He37D8φ: C2/C1C2 ⊆ Out D4×He3726(D4xHe3):2C2432,192
(D4×He3)⋊3C2 = D4×C32⋊C6φ: C2/C1C2 ⊆ Out D4×He33612+(D4xHe3):3C2432,360
(D4×He3)⋊4C2 = C62.13D6φ: C2/C1C2 ⊆ Out D4×He37212-(D4xHe3):4C2432,361
(D4×He3)⋊5C2 = D4×He3⋊C2φ: C2/C1C2 ⊆ Out D4×He3366(D4xHe3):5C2432,390
(D4×He3)⋊6C2 = C62.16D6φ: C2/C1C2 ⊆ Out D4×He3726(D4xHe3):6C2432,391
(D4×He3)⋊7C2 = D8×He3φ: C2/C1C2 ⊆ Out D4×He3726(D4xHe3):7C2432,216
(D4×He3)⋊8C2 = C4○D4×He3φ: trivial image726(D4xHe3):8C2432,410

Non-split extensions G=N.Q with N=D4×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×He3).1C2 = He38SD16φ: C2/C1C2 ⊆ Out D4×He37212-(D4xHe3).1C2432,152
(D4×He3).2C2 = He39SD16φ: C2/C1C2 ⊆ Out D4×He3726(D4xHe3).2C2432,193
(D4×He3).3C2 = SD16×He3φ: C2/C1C2 ⊆ Out D4×He3726(D4xHe3).3C2432,219

׿
×
𝔽