Copied to
clipboard

G = He37D8order 432 = 24·33

2nd semidirect product of He3 and D8 acting via D8/D4=C2

non-abelian, supersoluble, monomial

Aliases: He37D8, (D4×He3)⋊2C2, D4⋊(He3⋊C2), He34C83C2, He35D42C2, (C3×C12).16D6, (D4×C32)⋊2S3, C325(D4⋊S3), (C2×He3).34D4, C2.4(He37D4), C3.2(C327D8), C6.40(C327D4), (C4×He3).12C22, C12.44(C2×C3⋊S3), (C3×D4).6(C3⋊S3), C4.1(C2×He3⋊C2), (C3×C6).35(C3⋊D4), SmallGroup(432,192)

Series: Derived Chief Lower central Upper central

C1C3C4×He3 — He37D8
C1C3C32He3C2×He3C4×He3He35D4 — He37D8
He3C2×He3C4×He3 — He37D8
C1C6C12C3×D4

Generators and relations for He37D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 577 in 121 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, D4, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×D4, He3, C3×C12, S3×C6, C62, D4⋊S3, C3×D8, He3⋊C2, C2×He3, C2×He3, C3×C3⋊C8, C3×D12, D4×C32, C4×He3, C2×He3⋊C2, C22×He3, C3×D4⋊S3, He34C8, He35D4, D4×He3, He37D8
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, C3⋊D4, C2×C3⋊S3, D4⋊S3, He3⋊C2, C327D4, C2×He3⋊C2, C327D8, He37D4, He37D8

Smallest permutation representation of He37D8
On 72 points
Generators in S72
(1 43 59)(2 60 44)(3 45 61)(4 62 46)(5 47 63)(6 64 48)(7 41 57)(8 58 42)(9 26 37)(10 38 27)(11 28 39)(12 40 29)(13 30 33)(14 34 31)(15 32 35)(16 36 25)(17 54 67)(18 68 55)(19 56 69)(20 70 49)(21 50 71)(22 72 51)(23 52 65)(24 66 53)
(1 31 20)(2 32 21)(3 25 22)(4 26 23)(5 27 24)(6 28 17)(7 29 18)(8 30 19)(9 65 46)(10 66 47)(11 67 48)(12 68 41)(13 69 42)(14 70 43)(15 71 44)(16 72 45)(33 56 58)(34 49 59)(35 50 60)(36 51 61)(37 52 62)(38 53 63)(39 54 64)(40 55 57)
(1 70 49)(2 50 71)(3 72 51)(4 52 65)(5 66 53)(6 54 67)(7 68 55)(8 56 69)(9 23 37)(10 38 24)(11 17 39)(12 40 18)(13 19 33)(14 34 20)(15 21 35)(16 36 22)(25 45 61)(26 62 46)(27 47 63)(28 64 48)(29 41 57)(30 58 42)(31 43 59)(32 60 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 40)(17 23)(18 22)(19 21)(25 29)(26 28)(30 32)(41 61)(42 60)(43 59)(44 58)(45 57)(46 64)(47 63)(48 62)(49 70)(50 69)(51 68)(52 67)(53 66)(54 65)(55 72)(56 71)

G:=sub<Sym(72)| (1,43,59)(2,60,44)(3,45,61)(4,62,46)(5,47,63)(6,64,48)(7,41,57)(8,58,42)(9,26,37)(10,38,27)(11,28,39)(12,40,29)(13,30,33)(14,34,31)(15,32,35)(16,36,25)(17,54,67)(18,68,55)(19,56,69)(20,70,49)(21,50,71)(22,72,51)(23,52,65)(24,66,53), (1,31,20)(2,32,21)(3,25,22)(4,26,23)(5,27,24)(6,28,17)(7,29,18)(8,30,19)(9,65,46)(10,66,47)(11,67,48)(12,68,41)(13,69,42)(14,70,43)(15,71,44)(16,72,45)(33,56,58)(34,49,59)(35,50,60)(36,51,61)(37,52,62)(38,53,63)(39,54,64)(40,55,57), (1,70,49)(2,50,71)(3,72,51)(4,52,65)(5,66,53)(6,54,67)(7,68,55)(8,56,69)(9,23,37)(10,38,24)(11,17,39)(12,40,18)(13,19,33)(14,34,20)(15,21,35)(16,36,22)(25,45,61)(26,62,46)(27,47,63)(28,64,48)(29,41,57)(30,58,42)(31,43,59)(32,60,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,40)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(41,61)(42,60)(43,59)(44,58)(45,57)(46,64)(47,63)(48,62)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71)>;

G:=Group( (1,43,59)(2,60,44)(3,45,61)(4,62,46)(5,47,63)(6,64,48)(7,41,57)(8,58,42)(9,26,37)(10,38,27)(11,28,39)(12,40,29)(13,30,33)(14,34,31)(15,32,35)(16,36,25)(17,54,67)(18,68,55)(19,56,69)(20,70,49)(21,50,71)(22,72,51)(23,52,65)(24,66,53), (1,31,20)(2,32,21)(3,25,22)(4,26,23)(5,27,24)(6,28,17)(7,29,18)(8,30,19)(9,65,46)(10,66,47)(11,67,48)(12,68,41)(13,69,42)(14,70,43)(15,71,44)(16,72,45)(33,56,58)(34,49,59)(35,50,60)(36,51,61)(37,52,62)(38,53,63)(39,54,64)(40,55,57), (1,70,49)(2,50,71)(3,72,51)(4,52,65)(5,66,53)(6,54,67)(7,68,55)(8,56,69)(9,23,37)(10,38,24)(11,17,39)(12,40,18)(13,19,33)(14,34,20)(15,21,35)(16,36,22)(25,45,61)(26,62,46)(27,47,63)(28,64,48)(29,41,57)(30,58,42)(31,43,59)(32,60,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,40)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(41,61)(42,60)(43,59)(44,58)(45,57)(46,64)(47,63)(48,62)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71) );

G=PermutationGroup([[(1,43,59),(2,60,44),(3,45,61),(4,62,46),(5,47,63),(6,64,48),(7,41,57),(8,58,42),(9,26,37),(10,38,27),(11,28,39),(12,40,29),(13,30,33),(14,34,31),(15,32,35),(16,36,25),(17,54,67),(18,68,55),(19,56,69),(20,70,49),(21,50,71),(22,72,51),(23,52,65),(24,66,53)], [(1,31,20),(2,32,21),(3,25,22),(4,26,23),(5,27,24),(6,28,17),(7,29,18),(8,30,19),(9,65,46),(10,66,47),(11,67,48),(12,68,41),(13,69,42),(14,70,43),(15,71,44),(16,72,45),(33,56,58),(34,49,59),(35,50,60),(36,51,61),(37,52,62),(38,53,63),(39,54,64),(40,55,57)], [(1,70,49),(2,50,71),(3,72,51),(4,52,65),(5,66,53),(6,54,67),(7,68,55),(8,56,69),(9,23,37),(10,38,24),(11,17,39),(12,40,18),(13,19,33),(14,34,20),(15,21,35),(16,36,22),(25,45,61),(26,62,46),(27,47,63),(28,64,48),(29,41,57),(30,58,42),(31,43,59),(32,60,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,40),(17,23),(18,22),(19,21),(25,29),(26,28),(30,32),(41,61),(42,60),(43,59),(44,58),(45,57),(46,64),(47,63),(48,62),(49,70),(50,69),(51,68),(52,67),(53,66),(54,65),(55,72),(56,71)]])

41 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F 4 6A6B6C6D6E6F6G6H6I···6P6Q6R8A8B12A12B12C12D12E12F24A24B24C24D
order12223333334666666666···6668812121212121224242424
size1143611666621144666612···1236361818221212121218181818

41 irreducible representations

dim11112222233466
type+++++++++
imageC1C2C2C2S3D4D6D8C3⋊D4He3⋊C2C2×He3⋊C2D4⋊S3He37D4He37D8
kernelHe37D8He34C8He35D4D4×He3D4×C32C2×He3C3×C12He3C3×C6D4C4C32C2C1
# reps11114142844424

Matrix representation of He37D8 in GL5(𝔽73)

10000
01000
00010
00001
00100
,
10000
01000
00800
00080
00008
,
10000
01000
00080
00001
006400
,
014000
2641000
00100
00001
00010
,
10000
2972000
00100
00001
00010

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,64,0,0,8,0,0,0,0,0,1,0],[0,26,0,0,0,14,41,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[1,29,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

He37D8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_7D_8
% in TeX

G:=Group("He3:7D8");
// GroupNames label

G:=SmallGroup(432,192);
// by ID

G=gap.SmallGroup(432,192);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽