Extensions 1→N→G→Q→1 with N=He3 and Q=C2×C8

Direct product G=N×Q with N=He3 and Q=C2×C8
dρLabelID
C2×C8×He3144C2xC8xHe3432,210

Semidirect products G=N:Q with N=He3 and Q=C2×C8
extensionφ:Q→Out NdρLabelID
He3⋊(C2×C8) = C2×He3⋊C8φ: C2×C8/C2C8 ⊆ Out He3546+He3:(C2xC8)432,529
He32(C2×C8) = He32(C2×C8)φ: C2×C8/C4C4 ⊆ Out He3723He3:2(C2xC8)432,273
He33(C2×C8) = C32⋊C6⋊C8φ: C2×C8/C4C22 ⊆ Out He3726He3:3(C2xC8)432,76
He34(C2×C8) = C12.89S32φ: C2×C8/C4C22 ⊆ Out He3726He3:4(C2xC8)432,81
He35(C2×C8) = C2×He32C8φ: C2×C8/C22C4 ⊆ Out He3144He3:5(C2xC8)432,277
He36(C2×C8) = C8×C32⋊C6φ: C2×C8/C8C2 ⊆ Out He3726He3:6(C2xC8)432,115
He37(C2×C8) = C8×He3⋊C2φ: C2×C8/C8C2 ⊆ Out He3723He3:7(C2xC8)432,173
He38(C2×C8) = C2×He33C8φ: C2×C8/C2×C4C2 ⊆ Out He3144He3:8(C2xC8)432,136
He39(C2×C8) = C2×He34C8φ: C2×C8/C2×C4C2 ⊆ Out He3144He3:9(C2xC8)432,184


׿
×
𝔽