Copied to
clipboard

G = C2×He3⋊C8order 432 = 24·33

Direct product of C2 and He3⋊C8

direct product, non-abelian, soluble

Aliases: C2×He3⋊C8, C6.2F9, He3⋊(C2×C8), C3.(C2×F9), (C2×He3)⋊C8, He3⋊C4.C4, He3⋊C2⋊C8, He3⋊C4.2C22, (C2×He3⋊C2).C4, (C2×He3⋊C4).3C2, He3⋊C2.1(C2×C4), SmallGroup(432,529)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3⋊C8
C1C3He3He3⋊C2He3⋊C4He3⋊C8 — C2×He3⋊C8
He3 — C2×He3⋊C8
C1C2

Generators and relations for C2×He3⋊C8
 G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=d, cd=dc, ece-1=c-1, ede-1=bc-1d >

9C2
9C2
12C3
9C4
9C4
9C22
9C6
9C6
12S3
12S3
12C6
4C32
9C2×C4
27C8
27C8
9C12
9C12
9C2×C6
12D6
4C3×C6
12C3×S3
12C3×S3
27C2×C8
9C3⋊C8
9C3⋊C8
9C2×C12
12S3×C6
9C2×C3⋊C8

Character table of C2×He3⋊C8

 class 12A2B2C3A3B4A4B4C4D6A6B6C6D8A8B8C8D8E8F8G8H12A12B12C12D
 size 119922499992181824272727272727272718181818
ρ111111111111111111111111111    trivial
ρ211111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ31-1-1111-111-1-1-11-11-1-1-1-11111-1-11    linear of order 2
ρ41-1-1111-111-1-1-11-1-11111-1-1-11-1-11    linear of order 2
ρ5111111-1-1-1-11111-iii-i-iii-i-1-1-1-1    linear of order 4
ρ61-1-11111-1-11-1-11-1-i-i-iiiii-i-111-1    linear of order 4
ρ7111111-1-1-1-11111i-i-iii-i-ii-1-1-1-1    linear of order 4
ρ81-1-11111-1-11-1-11-1iii-i-i-i-ii-111-1    linear of order 4
ρ911-1-111-i-iii1-1-11ζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ83i-ii-i    linear of order 8
ρ101-11-111-ii-ii-11-1-1ζ8ζ83ζ87ζ8ζ85ζ87ζ83ζ85-i-iii    linear of order 8
ρ1111-1-111ii-i-i1-1-11ζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ85-ii-ii    linear of order 8
ρ121-11-111i-ii-i-11-1-1ζ87ζ85ζ8ζ87ζ83ζ8ζ85ζ83ii-i-i    linear of order 8
ρ131-11-111-ii-ii-11-1-1ζ85ζ87ζ83ζ85ζ8ζ83ζ87ζ8-i-iii    linear of order 8
ρ141-11-111i-ii-i-11-1-1ζ83ζ8ζ85ζ83ζ87ζ85ζ8ζ87ii-i-i    linear of order 8
ρ1511-1-111ii-i-i1-1-11ζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ8-ii-ii    linear of order 8
ρ1611-1-111-i-iii1-1-11ζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ87i-ii-i    linear of order 8
ρ176-62-2-30-222-23-11000000000-111-1    orthogonal faithful
ρ1866-2-2-302222-311000000000-1-1-1-1    orthogonal lifted from He3⋊C8
ρ1966-2-2-30-2-2-2-2-3110000000001111    symplectic lifted from He3⋊C8, Schur index 2
ρ206-62-2-302-2-223-110000000001-1-11    symplectic faithful, Schur index 2
ρ216622-30-2i-2i2i2i-3-1-1000000000-ii-ii    complex lifted from He3⋊C8
ρ226-6-22-302i-2i2i-2i31-1000000000-i-iii    complex faithful
ρ236-6-22-30-2i2i-2i2i31-1000000000ii-i-i    complex faithful
ρ246622-302i2i-2i-2i-3-1-1000000000i-ii-i    complex lifted from He3⋊C8
ρ258-8008-10000-8001000000000000    orthogonal lifted from C2×F9
ρ2688008-10000800-1000000000000    orthogonal lifted from F9

Smallest permutation representation of C2×He3⋊C8
On 54 points
Generators in S54
(1 2)(3 6)(4 5)(7 54)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 36)(16 37)(17 38)(18 31)(19 32)(20 33)(21 34)(22 35)(23 43)(24 44)(25 45)(26 46)(27 39)(28 40)(29 41)(30 42)
(1 34 52)(2 21 13)(3 48 45)(4 41 38)(5 29 17)(6 9 25)(7 10 28)(8 27 22)(11 16 18)(12 14 15)(19 30 20)(23 24 26)(31 50 37)(32 42 33)(35 47 39)(36 51 53)(40 54 49)(43 44 46)
(1 3 4)(2 6 5)(7 27 19)(8 20 28)(9 29 21)(10 22 30)(11 23 15)(12 16 24)(13 25 17)(14 18 26)(31 46 53)(32 54 39)(33 40 47)(34 48 41)(35 42 49)(36 50 43)(37 44 51)(38 52 45)
(1 33 51)(2 20 12)(3 40 37)(4 47 44)(5 8 24)(6 28 16)(7 26 21)(9 27 14)(10 15 17)(11 13 22)(18 29 19)(23 25 30)(31 41 32)(34 54 46)(35 50 52)(36 38 49)(39 53 48)(42 43 45)
(3 4)(5 6)(7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,2)(3,6)(4,5)(7,54)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,36)(16,37)(17,38)(18,31)(19,32)(20,33)(21,34)(22,35)(23,43)(24,44)(25,45)(26,46)(27,39)(28,40)(29,41)(30,42), (1,34,52)(2,21,13)(3,48,45)(4,41,38)(5,29,17)(6,9,25)(7,10,28)(8,27,22)(11,16,18)(12,14,15)(19,30,20)(23,24,26)(31,50,37)(32,42,33)(35,47,39)(36,51,53)(40,54,49)(43,44,46), (1,3,4)(2,6,5)(7,27,19)(8,20,28)(9,29,21)(10,22,30)(11,23,15)(12,16,24)(13,25,17)(14,18,26)(31,46,53)(32,54,39)(33,40,47)(34,48,41)(35,42,49)(36,50,43)(37,44,51)(38,52,45), (1,33,51)(2,20,12)(3,40,37)(4,47,44)(5,8,24)(6,28,16)(7,26,21)(9,27,14)(10,15,17)(11,13,22)(18,29,19)(23,25,30)(31,41,32)(34,54,46)(35,50,52)(36,38,49)(39,53,48)(42,43,45), (3,4)(5,6)(7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54)>;

G:=Group( (1,2)(3,6)(4,5)(7,54)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,36)(16,37)(17,38)(18,31)(19,32)(20,33)(21,34)(22,35)(23,43)(24,44)(25,45)(26,46)(27,39)(28,40)(29,41)(30,42), (1,34,52)(2,21,13)(3,48,45)(4,41,38)(5,29,17)(6,9,25)(7,10,28)(8,27,22)(11,16,18)(12,14,15)(19,30,20)(23,24,26)(31,50,37)(32,42,33)(35,47,39)(36,51,53)(40,54,49)(43,44,46), (1,3,4)(2,6,5)(7,27,19)(8,20,28)(9,29,21)(10,22,30)(11,23,15)(12,16,24)(13,25,17)(14,18,26)(31,46,53)(32,54,39)(33,40,47)(34,48,41)(35,42,49)(36,50,43)(37,44,51)(38,52,45), (1,33,51)(2,20,12)(3,40,37)(4,47,44)(5,8,24)(6,28,16)(7,26,21)(9,27,14)(10,15,17)(11,13,22)(18,29,19)(23,25,30)(31,41,32)(34,54,46)(35,50,52)(36,38,49)(39,53,48)(42,43,45), (3,4)(5,6)(7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,2),(3,6),(4,5),(7,54),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,36),(16,37),(17,38),(18,31),(19,32),(20,33),(21,34),(22,35),(23,43),(24,44),(25,45),(26,46),(27,39),(28,40),(29,41),(30,42)], [(1,34,52),(2,21,13),(3,48,45),(4,41,38),(5,29,17),(6,9,25),(7,10,28),(8,27,22),(11,16,18),(12,14,15),(19,30,20),(23,24,26),(31,50,37),(32,42,33),(35,47,39),(36,51,53),(40,54,49),(43,44,46)], [(1,3,4),(2,6,5),(7,27,19),(8,20,28),(9,29,21),(10,22,30),(11,23,15),(12,16,24),(13,25,17),(14,18,26),(31,46,53),(32,54,39),(33,40,47),(34,48,41),(35,42,49),(36,50,43),(37,44,51),(38,52,45)], [(1,33,51),(2,20,12),(3,40,37),(4,47,44),(5,8,24),(6,28,16),(7,26,21),(9,27,14),(10,15,17),(11,13,22),(18,29,19),(23,25,30),(31,41,32),(34,54,46),(35,50,52),(36,38,49),(39,53,48),(42,43,45)], [(3,4),(5,6),(7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54)]])

Matrix representation of C2×He3⋊C8 in GL6(ℤ)

-100000
0-10000
00-1000
000-100
0000-10
00000-1
,
-1-10-2-2-1
-1-10-1-1-2
-10001-1
101121
010001
100101
,
0-10000
1-10000
000-100
001-100
-10-10-1-1
010110
,
1-110-11
0-1-10-2-1
-10-1-1-2-1
-20-1-1-1-2
111122
000010
,
001000
001-100
111012
110121
0-100-10
-10-100-1

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,-1,-1,1,0,1,-1,-1,0,0,1,0,0,0,0,1,0,0,-2,-1,0,1,0,1,-2,-1,1,2,0,0,-1,-2,-1,1,1,1],[0,1,0,0,-1,0,-1,-1,0,0,0,1,0,0,0,1,-1,0,0,0,-1,-1,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0],[1,0,-1,-2,1,0,-1,-1,0,0,1,0,1,-1,-1,-1,1,0,0,0,-1,-1,1,0,-1,-2,-2,-1,2,1,1,-1,-1,-2,2,0],[0,0,1,1,0,-1,0,0,1,1,-1,0,1,1,1,0,0,-1,0,-1,0,1,0,0,0,0,1,2,-1,0,0,0,2,1,0,-1] >;

C2×He3⋊C8 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes C_8
% in TeX

G:=Group("C2xHe3:C8");
// GroupNames label

G:=SmallGroup(432,529);
// by ID

G=gap.SmallGroup(432,529);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,58,1684,998,795,4709,4387,2042,915,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=d,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=b*c^-1*d>;
// generators/relations

Export

Subgroup lattice of C2×He3⋊C8 in TeX
Character table of C2×He3⋊C8 in TeX

׿
×
𝔽