direct product, non-abelian, soluble
Aliases: C2×He3⋊C8, C6.2F9, He3⋊(C2×C8), C3.(C2×F9), (C2×He3)⋊C8, He3⋊C4.C4, He3⋊C2⋊C8, He3⋊C4.2C22, (C2×He3⋊C2).C4, (C2×He3⋊C4).3C2, He3⋊C2.1(C2×C4), SmallGroup(432,529)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊C2 — He3⋊C4 — He3⋊C8 — C2×He3⋊C8 |
He3 — C2×He3⋊C8 |
Generators and relations for C2×He3⋊C8
G = < a,b,c,d,e | a2=b3=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=d, cd=dc, ece-1=c-1, ede-1=bc-1d >
Character table of C2×He3⋊C8
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 2 | 24 | 9 | 9 | 9 | 9 | 2 | 18 | 18 | 24 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -i | -i | i | i | i | i | -i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | i | i | i | -i | -i | -i | -i | i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | -1 | -1 | 1 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | i | -i | i | -i | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | -1 | -1 | ζ8 | ζ83 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | -i | -i | i | i | linear of order 8 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | -1 | -1 | 1 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | -i | i | -i | i | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | -1 | -1 | ζ87 | ζ85 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | i | i | -i | -i | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | -1 | -1 | ζ85 | ζ87 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | -i | -i | i | i | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | -1 | -1 | ζ83 | ζ8 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | i | i | -i | -i | linear of order 8 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | -1 | -1 | 1 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | -i | i | -i | i | linear of order 8 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | -1 | -1 | 1 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | i | -i | i | -i | linear of order 8 |
ρ17 | 6 | -6 | 2 | -2 | -3 | 0 | -2 | 2 | 2 | -2 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal faithful |
ρ18 | 6 | 6 | -2 | -2 | -3 | 0 | 2 | 2 | 2 | 2 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from He3⋊C8 |
ρ19 | 6 | 6 | -2 | -2 | -3 | 0 | -2 | -2 | -2 | -2 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from He3⋊C8, Schur index 2 |
ρ20 | 6 | -6 | 2 | -2 | -3 | 0 | 2 | -2 | -2 | 2 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | symplectic faithful, Schur index 2 |
ρ21 | 6 | 6 | 2 | 2 | -3 | 0 | -2i | -2i | 2i | 2i | -3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | -i | i | complex lifted from He3⋊C8 |
ρ22 | 6 | -6 | -2 | 2 | -3 | 0 | 2i | -2i | 2i | -2i | 3 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | -i | i | i | complex faithful |
ρ23 | 6 | -6 | -2 | 2 | -3 | 0 | -2i | 2i | -2i | 2i | 3 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | i | -i | -i | complex faithful |
ρ24 | 6 | 6 | 2 | 2 | -3 | 0 | 2i | 2i | -2i | -2i | -3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | i | -i | complex lifted from He3⋊C8 |
ρ25 | 8 | -8 | 0 | 0 | 8 | -1 | 0 | 0 | 0 | 0 | -8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×F9 |
ρ26 | 8 | 8 | 0 | 0 | 8 | -1 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F9 |
(1 2)(3 6)(4 5)(7 54)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 36)(16 37)(17 38)(18 31)(19 32)(20 33)(21 34)(22 35)(23 43)(24 44)(25 45)(26 46)(27 39)(28 40)(29 41)(30 42)
(1 34 52)(2 21 13)(3 48 45)(4 41 38)(5 29 17)(6 9 25)(7 10 28)(8 27 22)(11 16 18)(12 14 15)(19 30 20)(23 24 26)(31 50 37)(32 42 33)(35 47 39)(36 51 53)(40 54 49)(43 44 46)
(1 3 4)(2 6 5)(7 27 19)(8 20 28)(9 29 21)(10 22 30)(11 23 15)(12 16 24)(13 25 17)(14 18 26)(31 46 53)(32 54 39)(33 40 47)(34 48 41)(35 42 49)(36 50 43)(37 44 51)(38 52 45)
(1 33 51)(2 20 12)(3 40 37)(4 47 44)(5 8 24)(6 28 16)(7 26 21)(9 27 14)(10 15 17)(11 13 22)(18 29 19)(23 25 30)(31 41 32)(34 54 46)(35 50 52)(36 38 49)(39 53 48)(42 43 45)
(3 4)(5 6)(7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,2)(3,6)(4,5)(7,54)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,36)(16,37)(17,38)(18,31)(19,32)(20,33)(21,34)(22,35)(23,43)(24,44)(25,45)(26,46)(27,39)(28,40)(29,41)(30,42), (1,34,52)(2,21,13)(3,48,45)(4,41,38)(5,29,17)(6,9,25)(7,10,28)(8,27,22)(11,16,18)(12,14,15)(19,30,20)(23,24,26)(31,50,37)(32,42,33)(35,47,39)(36,51,53)(40,54,49)(43,44,46), (1,3,4)(2,6,5)(7,27,19)(8,20,28)(9,29,21)(10,22,30)(11,23,15)(12,16,24)(13,25,17)(14,18,26)(31,46,53)(32,54,39)(33,40,47)(34,48,41)(35,42,49)(36,50,43)(37,44,51)(38,52,45), (1,33,51)(2,20,12)(3,40,37)(4,47,44)(5,8,24)(6,28,16)(7,26,21)(9,27,14)(10,15,17)(11,13,22)(18,29,19)(23,25,30)(31,41,32)(34,54,46)(35,50,52)(36,38,49)(39,53,48)(42,43,45), (3,4)(5,6)(7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54)>;
G:=Group( (1,2)(3,6)(4,5)(7,54)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,36)(16,37)(17,38)(18,31)(19,32)(20,33)(21,34)(22,35)(23,43)(24,44)(25,45)(26,46)(27,39)(28,40)(29,41)(30,42), (1,34,52)(2,21,13)(3,48,45)(4,41,38)(5,29,17)(6,9,25)(7,10,28)(8,27,22)(11,16,18)(12,14,15)(19,30,20)(23,24,26)(31,50,37)(32,42,33)(35,47,39)(36,51,53)(40,54,49)(43,44,46), (1,3,4)(2,6,5)(7,27,19)(8,20,28)(9,29,21)(10,22,30)(11,23,15)(12,16,24)(13,25,17)(14,18,26)(31,46,53)(32,54,39)(33,40,47)(34,48,41)(35,42,49)(36,50,43)(37,44,51)(38,52,45), (1,33,51)(2,20,12)(3,40,37)(4,47,44)(5,8,24)(6,28,16)(7,26,21)(9,27,14)(10,15,17)(11,13,22)(18,29,19)(23,25,30)(31,41,32)(34,54,46)(35,50,52)(36,38,49)(39,53,48)(42,43,45), (3,4)(5,6)(7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,2),(3,6),(4,5),(7,54),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,36),(16,37),(17,38),(18,31),(19,32),(20,33),(21,34),(22,35),(23,43),(24,44),(25,45),(26,46),(27,39),(28,40),(29,41),(30,42)], [(1,34,52),(2,21,13),(3,48,45),(4,41,38),(5,29,17),(6,9,25),(7,10,28),(8,27,22),(11,16,18),(12,14,15),(19,30,20),(23,24,26),(31,50,37),(32,42,33),(35,47,39),(36,51,53),(40,54,49),(43,44,46)], [(1,3,4),(2,6,5),(7,27,19),(8,20,28),(9,29,21),(10,22,30),(11,23,15),(12,16,24),(13,25,17),(14,18,26),(31,46,53),(32,54,39),(33,40,47),(34,48,41),(35,42,49),(36,50,43),(37,44,51),(38,52,45)], [(1,33,51),(2,20,12),(3,40,37),(4,47,44),(5,8,24),(6,28,16),(7,26,21),(9,27,14),(10,15,17),(11,13,22),(18,29,19),(23,25,30),(31,41,32),(34,54,46),(35,50,52),(36,38,49),(39,53,48),(42,43,45)], [(3,4),(5,6),(7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54)]])
Matrix representation of C2×He3⋊C8 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | -1 | 0 | -2 | -2 | -1 |
-1 | -1 | 0 | -1 | -1 | -2 |
-1 | 0 | 0 | 0 | 1 | -1 |
1 | 0 | 1 | 1 | 2 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
0 | -1 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
-1 | 0 | -1 | 0 | -1 | -1 |
0 | 1 | 0 | 1 | 1 | 0 |
1 | -1 | 1 | 0 | -1 | 1 |
0 | -1 | -1 | 0 | -2 | -1 |
-1 | 0 | -1 | -1 | -2 | -1 |
-2 | 0 | -1 | -1 | -1 | -2 |
1 | 1 | 1 | 1 | 2 | 2 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 2 |
1 | 1 | 0 | 1 | 2 | 1 |
0 | -1 | 0 | 0 | -1 | 0 |
-1 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,-1,-1,1,0,1,-1,-1,0,0,1,0,0,0,0,1,0,0,-2,-1,0,1,0,1,-2,-1,1,2,0,0,-1,-2,-1,1,1,1],[0,1,0,0,-1,0,-1,-1,0,0,0,1,0,0,0,1,-1,0,0,0,-1,-1,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0],[1,0,-1,-2,1,0,-1,-1,0,0,1,0,1,-1,-1,-1,1,0,0,0,-1,-1,1,0,-1,-2,-2,-1,2,1,1,-1,-1,-2,2,0],[0,0,1,1,0,-1,0,0,1,1,-1,0,1,1,1,0,0,-1,0,-1,0,1,0,0,0,0,1,2,-1,0,0,0,2,1,0,-1] >;
C2×He3⋊C8 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes C_8
% in TeX
G:=Group("C2xHe3:C8");
// GroupNames label
G:=SmallGroup(432,529);
// by ID
G=gap.SmallGroup(432,529);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,58,1684,998,795,4709,4387,2042,915,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=d,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=b*c^-1*d>;
// generators/relations
Export
Subgroup lattice of C2×He3⋊C8 in TeX
Character table of C2×He3⋊C8 in TeX