Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C3xS3

Direct product G=NxQ with N=C4xS3 and Q=C3xS3
dρLabelID
S32xC12484S3^2xC12432,648

Semidirect products G=N:Q with N=C4xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C4xS3):1(C3xS3) = C3xD12:5S3φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3):1(C3xS3)432,643
(C4xS3):2(C3xS3) = C3xD6.6D6φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3):2(C3xS3)432,647
(C4xS3):3(C3xS3) = C3xS3xD12φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3):3(C3xS3)432,649
(C4xS3):4(C3xS3) = C3xD6.D6φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3):4(C3xS3)432,646

Non-split extensions G=N.Q with N=C4xS3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C4xS3).1(C3xS3) = C3xS3xDic6φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3).1(C3xS3)432,642
(C4xS3).2(C3xS3) = C3xD6.Dic3φ: C3xS3/C32C2 ⊆ Out C4xS3484(C4xS3).2(C3xS3)432,416
(C4xS3).3(C3xS3) = C3xS3xC3:C8φ: trivial image484(C4xS3).3(C3xS3)432,414

׿
x
:
Z
F
o
wr
Q
<