Extensions 1→N→G→Q→1 with N=C3:S3 and Q=Dic6

Direct product G=NxQ with N=C3:S3 and Q=Dic6
dρLabelID
C3:S3xDic6144C3:S3xDic6432,663

Semidirect products G=N:Q with N=C3:S3 and Q=Dic6
extensionφ:Q→Out NdρLabelID
C3:S3:Dic6 = C3:S3:Dic6φ: Dic6/C4S3 ⊆ Out C3:S37212-C3:S3:Dic6432,294
C3:S3:2Dic6 = C2xC33:Q8φ: Dic6/C6C22 ⊆ Out C3:S3488C3:S3:2Dic6432,758
C3:S3:3Dic6 = C33:5(C2xQ8)φ: Dic6/Dic3C2 ⊆ Out C3:S3488-C3:S3:3Dic6432,604
C3:S3:4Dic6 = C3:S3:4Dic6φ: Dic6/C12C2 ⊆ Out C3:S3484C3:S3:4Dic6432,687

Non-split extensions G=N.Q with N=C3:S3 and Q=Dic6
extensionφ:Q→Out NdρLabelID
C3:S3.1Dic6 = C33:C4:C4φ: Dic6/C6C22 ⊆ Out C3:S3484C3:S3.1Dic6432,581
C3:S3.2Dic6 = (C3xC6).9D12φ: Dic6/C6C22 ⊆ Out C3:S3488-C3:S3.2Dic6432,587
C3:S3.3Dic6 = C33:(C4:C4)φ: Dic6/Dic3C2 ⊆ Out C3:S3488-C3:S3.3Dic6432,569
C3:S3.4Dic6 = C33:9(C4:C4)φ: Dic6/C12C2 ⊆ Out C3:S3484C3:S3.4Dic6432,638

׿
x
:
Z
F
o
wr
Q
<