Extensions 1→N→G→Q→1 with N=C3 and Q=C3×D4.S3

Direct product G=N×Q with N=C3 and Q=C3×D4.S3
dρLabelID
C32×D4.S372C3^2xD4.S3432,476

Semidirect products G=N:Q with N=C3 and Q=C3×D4.S3
extensionφ:Q→Aut NdρLabelID
C31(C3×D4.S3) = C3×D12.S3φ: C3×D4.S3/C3×C3⋊C8C2 ⊆ Aut C3484C3:1(C3xD4.S3)432,421
C32(C3×D4.S3) = C3×Dic6⋊S3φ: C3×D4.S3/C3×Dic6C2 ⊆ Aut C3484C3:2(C3xD4.S3)432,420
C33(C3×D4.S3) = C3×C329SD16φ: C3×D4.S3/D4×C32C2 ⊆ Aut C372C3:3(C3xD4.S3)432,492

Non-split extensions G=N.Q with N=C3 and Q=C3×D4.S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×D4.S3) = C3×D4.D9φ: C3×D4.S3/D4×C32C2 ⊆ Aut C3724C3.1(C3xD4.S3)432,148
C3.2(C3×D4.S3) = He38SD16φ: C3×D4.S3/D4×C32C2 ⊆ Aut C37212-C3.2(C3xD4.S3)432,152
C3.3(C3×D4.S3) = Dic18⋊C6φ: C3×D4.S3/D4×C32C2 ⊆ Aut C37212-C3.3(C3xD4.S3)432,154
C3.4(C3×D4.S3) = C9×D4.S3central extension (φ=1)724C3.4(C3xD4.S3)432,151

׿
×
𝔽