metabelian, supersoluble, monomial
Aliases: Dic18⋊1C6, 3- 1+2⋊2SD16, C9⋊C8⋊1C6, D4.D9⋊C3, C9⋊C24⋊1C2, D4.(C9⋊C6), C12.5(S3×C6), C36.1(C2×C6), (D4×C9).1C6, C9⋊2(C3×SD16), C18.7(C3×D4), (C3×C12).10D6, C36.C6⋊1C2, (D4×C32).2S3, C32.(D4.S3), C2.4(Dic9⋊C6), (D4×3- 1+2).1C2, (C2×3- 1+2).7D4, (C4×3- 1+2).1C22, C4.1(C2×C9⋊C6), (C3×D4).5(C3×S3), C6.22(C3×C3⋊D4), C3.3(C3×D4.S3), (C3×C6).25(C3⋊D4), SmallGroup(432,154)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic18⋊C6
G = < a,b,c | a36=c6=1, b2=a18, bab-1=a-1, cac-1=a7, cbc-1=a9b >
Subgroups: 230 in 68 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, C2×C6, SD16, C18, C18, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×D4, C3×D4, C3×Q8, 3- 1+2, Dic9, C36, C36, C2×C18, C3×Dic3, C3×C12, C62, D4.S3, C3×SD16, C2×3- 1+2, C2×3- 1+2, C9⋊C8, Dic18, D4×C9, D4×C9, C3×C3⋊C8, C3×Dic6, D4×C32, C9⋊C12, C4×3- 1+2, C22×3- 1+2, D4.D9, C3×D4.S3, C9⋊C24, C36.C6, D4×3- 1+2, Dic18⋊C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, C3⋊D4, C3×D4, S3×C6, D4.S3, C3×SD16, C9⋊C6, C3×C3⋊D4, C2×C9⋊C6, C3×D4.S3, Dic9⋊C6, Dic18⋊C6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 64 19 46)(2 63 20 45)(3 62 21 44)(4 61 22 43)(5 60 23 42)(6 59 24 41)(7 58 25 40)(8 57 26 39)(9 56 27 38)(10 55 28 37)(11 54 29 72)(12 53 30 71)(13 52 31 70)(14 51 32 69)(15 50 33 68)(16 49 34 67)(17 48 35 66)(18 47 36 65)
(2 32 26 20 14 8)(3 27 15)(4 22)(5 17 29)(6 12 18 24 30 36)(9 33 21)(10 28)(11 23 35)(16 34)(37 46)(38 41 62 65 50 53)(39 72 51 48 63 60)(40 67)(42 57 54 69 66 45)(43 52)(44 47 68 71 56 59)(49 58)(55 64)(61 70)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,64,19,46)(2,63,20,45)(3,62,21,44)(4,61,22,43)(5,60,23,42)(6,59,24,41)(7,58,25,40)(8,57,26,39)(9,56,27,38)(10,55,28,37)(11,54,29,72)(12,53,30,71)(13,52,31,70)(14,51,32,69)(15,50,33,68)(16,49,34,67)(17,48,35,66)(18,47,36,65), (2,32,26,20,14,8)(3,27,15)(4,22)(5,17,29)(6,12,18,24,30,36)(9,33,21)(10,28)(11,23,35)(16,34)(37,46)(38,41,62,65,50,53)(39,72,51,48,63,60)(40,67)(42,57,54,69,66,45)(43,52)(44,47,68,71,56,59)(49,58)(55,64)(61,70)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,64,19,46)(2,63,20,45)(3,62,21,44)(4,61,22,43)(5,60,23,42)(6,59,24,41)(7,58,25,40)(8,57,26,39)(9,56,27,38)(10,55,28,37)(11,54,29,72)(12,53,30,71)(13,52,31,70)(14,51,32,69)(15,50,33,68)(16,49,34,67)(17,48,35,66)(18,47,36,65), (2,32,26,20,14,8)(3,27,15)(4,22)(5,17,29)(6,12,18,24,30,36)(9,33,21)(10,28)(11,23,35)(16,34)(37,46)(38,41,62,65,50,53)(39,72,51,48,63,60)(40,67)(42,57,54,69,66,45)(43,52)(44,47,68,71,56,59)(49,58)(55,64)(61,70) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,64,19,46),(2,63,20,45),(3,62,21,44),(4,61,22,43),(5,60,23,42),(6,59,24,41),(7,58,25,40),(8,57,26,39),(9,56,27,38),(10,55,28,37),(11,54,29,72),(12,53,30,71),(13,52,31,70),(14,51,32,69),(15,50,33,68),(16,49,34,67),(17,48,35,66),(18,47,36,65)], [(2,32,26,20,14,8),(3,27,15),(4,22),(5,17,29),(6,12,18,24,30,36),(9,33,21),(10,28),(11,23,35),(16,34),(37,46),(38,41,62,65,50,53),(39,72,51,48,63,60),(40,67),(42,57,54,69,66,45),(43,52),(44,47,68,71,56,59),(49,58),(55,64),(61,70)]])
41 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 12E | 18A | 18B | 18C | 18D | ··· | 18I | 24A | 24B | 24C | 24D | 36A | 36B | 36C |
order | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | ··· | 18 | 24 | 24 | 24 | 24 | 36 | 36 | 36 |
size | 1 | 1 | 4 | 2 | 3 | 3 | 2 | 36 | 2 | 3 | 3 | 4 | 4 | 12 | 12 | 18 | 18 | 6 | 6 | 6 | 4 | 6 | 6 | 36 | 36 | 6 | 6 | 6 | 12 | ··· | 12 | 18 | 18 | 18 | 18 | 12 | 12 | 12 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | - | + | + | + | - | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | Dic18⋊C6 | S3 | D4 | D6 | SD16 | C3×S3 | C3×D4 | C3⋊D4 | S3×C6 | C3×SD16 | C3×C3⋊D4 | D4.S3 | C3×D4.S3 | C9⋊C6 | C2×C9⋊C6 | Dic9⋊C6 |
kernel | Dic18⋊C6 | C9⋊C24 | C36.C6 | D4×3- 1+2 | D4.D9 | C9⋊C8 | Dic18 | D4×C9 | C1 | D4×C32 | C2×3- 1+2 | C3×C12 | 3- 1+2 | C3×D4 | C18 | C3×C6 | C12 | C9 | C6 | C32 | C3 | D4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 |
Matrix representation of Dic18⋊C6 ►in GL10(𝔽73)
72 | 1 | 70 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 48 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 65 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 57 | 0 | 0 | 0 | 9 |
0 | 0 | 0 | 0 | 2 | 28 | 62 | 65 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 62 | 47 | 0 | 65 | 0 |
0 | 0 | 31 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 65 | 42 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
55 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 66 | 21 | 59 | 0 | 0 |
0 | 0 | 0 | 0 | 66 | 21 | 43 | 0 | 59 | 0 |
0 | 0 | 0 | 0 | 21 | 43 | 66 | 0 | 0 | 59 |
0 | 0 | 0 | 0 | 16 | 49 | 56 | 63 | 7 | 52 |
0 | 0 | 0 | 0 | 49 | 21 | 69 | 7 | 52 | 30 |
0 | 0 | 0 | 0 | 56 | 69 | 21 | 52 | 30 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 48 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 32 | 61 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 24 | 23 | 0 | 65 | 0 |
0 | 0 | 0 | 0 | 61 | 23 | 9 | 0 | 0 | 9 |
G:=sub<GL(10,GF(73))| [72,72,25,25,0,0,0,0,0,0,1,0,48,0,0,0,0,0,0,0,70,70,1,1,0,0,0,0,0,0,3,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,65,11,2,0,0,0,0,0,9,0,0,57,28,62,0,0,0,0,0,9,0,0,62,47,0,0,0,0,0,0,0,0,65,0,0,0,0,0,0,0,0,0,0,65,0,0,0,0,0,0,0,9,0,0],[0,0,15,55,0,0,0,0,0,0,0,0,40,58,0,0,0,0,0,0,31,65,0,0,0,0,0,0,0,0,34,42,0,0,0,0,0,0,0,0,0,0,0,0,10,66,21,16,49,56,0,0,0,0,66,21,43,49,21,69,0,0,0,0,21,43,66,56,69,21,0,0,0,0,59,0,0,63,7,52,0,0,0,0,0,59,0,7,52,30,0,0,0,0,0,0,59,52,30,7],[1,0,48,0,0,0,0,0,0,0,0,1,0,48,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,0,0,64,32,61,0,0,0,0,0,8,0,32,24,23,0,0,0,0,0,0,64,61,23,9,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,65,0,0,0,0,0,0,0,0,0,0,9] >;
Dic18⋊C6 in GAP, Magma, Sage, TeX
{\rm Dic}_{18}\rtimes C_6
% in TeX
G:=Group("Dic18:C6");
// GroupNames label
G:=SmallGroup(432,154);
// by ID
G=gap.SmallGroup(432,154);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,1011,514,80,10085,2035,292,14118]);
// Polycyclic
G:=Group<a,b,c|a^36=c^6=1,b^2=a^18,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations