Extensions 1→N→G→Q→1 with N=C3 and Q=S3×S4

Direct product G=N×Q with N=C3 and Q=S3×S4
dρLabelID
C3×S3×S4246C3xS3xS4432,745

Semidirect products G=N:Q with N=C3 and Q=S3×S4
extensionφ:Q→Aut NdρLabelID
C31(S3×S4) = C3⋊S3×S4φ: S3×S4/C3×S4C2 ⊆ Aut C336C3:1(S3xS4)432,746
C32(S3×S4) = C6210D6φ: S3×S4/C3⋊S4C2 ⊆ Aut C32412+C3:2(S3xS4)432,748
C33(S3×S4) = S3×C3⋊S4φ: S3×S4/S3×A4C2 ⊆ Aut C32412+C3:3(S3xS4)432,747

Non-split extensions G=N.Q with N=C3 and Q=S3×S4
extensionφ:Q→Aut NdρLabelID
C3.1(S3×S4) = D9×S4φ: S3×S4/C3×S4C2 ⊆ Aut C3366+C3.1(S3xS4)432,521
C3.2(S3×S4) = C625D6φ: S3×S4/C3⋊S4C2 ⊆ Aut C3186+C3.2(S3xS4)432,523
C3.3(S3×S4) = S3×C3.S4φ: S3×S4/S3×A4C2 ⊆ Aut C33612+C3.3(S3xS4)432,522

׿
×
𝔽