Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C18

Direct product G=N×Q with N=C2×Dic3 and Q=C18
dρLabelID
Dic3×C2×C18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=C2×Dic3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1C18 = C9×D6⋊C4φ: C18/C9C2 ⊆ Out C2×Dic3144(C2xDic3):1C18432,135
(C2×Dic3)⋊2C18 = C9×C6.D4φ: C18/C9C2 ⊆ Out C2×Dic372(C2xDic3):2C18432,165
(C2×Dic3)⋊3C18 = C9×D42S3φ: C18/C9C2 ⊆ Out C2×Dic3724(C2xDic3):3C18432,359
(C2×Dic3)⋊4C18 = C18×C3⋊D4φ: C18/C9C2 ⊆ Out C2×Dic372(C2xDic3):4C18432,375
(C2×Dic3)⋊5C18 = S3×C2×C36φ: trivial image144(C2xDic3):5C18432,345

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1C18 = C9×Dic3⋊C4φ: C18/C9C2 ⊆ Out C2×Dic3144(C2xDic3).1C18432,132
(C2×Dic3).2C18 = C9×C4⋊Dic3φ: C18/C9C2 ⊆ Out C2×Dic3144(C2xDic3).2C18432,133
(C2×Dic3).3C18 = C18×Dic6φ: C18/C9C2 ⊆ Out C2×Dic3144(C2xDic3).3C18432,341
(C2×Dic3).4C18 = Dic3×C36φ: trivial image144(C2xDic3).4C18432,131

׿
×
𝔽