Extensions 1→N→G→Q→1 with N=D18 and Q=C2×C6

Direct product G=N×Q with N=D18 and Q=C2×C6
dρLabelID
D9×C22×C6144D9xC2^2xC6432,556

Semidirect products G=N:Q with N=D18 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
D181(C2×C6) = C2×D36⋊C3φ: C2×C6/C2C6 ⊆ Out D1872D18:1(C2xC6)432,354
D182(C2×C6) = D4×C9⋊C6φ: C2×C6/C2C6 ⊆ Out D183612+D18:2(C2xC6)432,362
D183(C2×C6) = C2×Dic9⋊C6φ: C2×C6/C2C6 ⊆ Out D1872D18:3(C2xC6)432,379
D184(C2×C6) = C23×C9⋊C6φ: C2×C6/C22C3 ⊆ Out D1872D18:4(C2xC6)432,559
D185(C2×C6) = C6×D36φ: C2×C6/C6C2 ⊆ Out D18144D18:5(C2xC6)432,343
D186(C2×C6) = C3×D4×D9φ: C2×C6/C6C2 ⊆ Out D18724D18:6(C2xC6)432,356
D187(C2×C6) = C6×C9⋊D4φ: C2×C6/C6C2 ⊆ Out D1872D18:7(C2xC6)432,374

Non-split extensions G=N.Q with N=D18 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
D18.1(C2×C6) = D366C6φ: C2×C6/C2C6 ⊆ Out D18726D18.1(C2xC6)432,355
D18.2(C2×C6) = Dic182C6φ: C2×C6/C2C6 ⊆ Out D187212-D18.2(C2xC6)432,363
D18.3(C2×C6) = D363C6φ: C2×C6/C2C6 ⊆ Out D187212+D18.3(C2xC6)432,371
D18.4(C2×C6) = C2×C4×C9⋊C6φ: C2×C6/C22C3 ⊆ Out D1872D18.4(C2xC6)432,353
D18.5(C2×C6) = Q8×C9⋊C6φ: C2×C6/C22C3 ⊆ Out D187212-D18.5(C2xC6)432,370
D18.6(C2×C6) = C3×D365C2φ: C2×C6/C6C2 ⊆ Out D18722D18.6(C2xC6)432,344
D18.7(C2×C6) = C3×D42D9φ: C2×C6/C6C2 ⊆ Out D18724D18.7(C2xC6)432,357
D18.8(C2×C6) = C3×Q83D9φ: C2×C6/C6C2 ⊆ Out D181444D18.8(C2xC6)432,365
D18.9(C2×C6) = D9×C2×C12φ: trivial image144D18.9(C2xC6)432,342
D18.10(C2×C6) = C3×Q8×D9φ: trivial image1444D18.10(C2xC6)432,364

׿
×
𝔽