Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C3:S3

Direct product G=NxQ with N=C4xS3 and Q=C3:S3
dρLabelID
C4xS3xC3:S372C4xS3xC3:S3432,670

Semidirect products G=N:Q with N=C4xS3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C4xS3):1(C3:S3) = C12.57S32φ: C3:S3/C32C2 ⊆ Out C4xS3144(C4xS3):1(C3:S3)432,668
(C4xS3):2(C3:S3) = C12.58S32φ: C3:S3/C32C2 ⊆ Out C4xS372(C4xS3):2(C3:S3)432,669
(C4xS3):3(C3:S3) = S3xC12:S3φ: C3:S3/C32C2 ⊆ Out C4xS372(C4xS3):3(C3:S3)432,671
(C4xS3):4(C3:S3) = C12.73S32φ: C3:S3/C32C2 ⊆ Out C4xS372(C4xS3):4(C3:S3)432,667

Non-split extensions G=N.Q with N=C4xS3 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C4xS3).1(C3:S3) = S3xC32:4Q8φ: C3:S3/C32C2 ⊆ Out C4xS3144(C4xS3).1(C3:S3)432,660
(C4xS3).2(C3:S3) = C33:7M4(2)φ: C3:S3/C32C2 ⊆ Out C4xS3144(C4xS3).2(C3:S3)432,433
(C4xS3).3(C3:S3) = S3xC32:4C8φ: trivial image144(C4xS3).3(C3:S3)432,430

׿
x
:
Z
F
o
wr
Q
<