Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C3⋊S3

Direct product G=N×Q with N=C4×S3 and Q=C3⋊S3
dρLabelID
C4×S3×C3⋊S372C4xS3xC3:S3432,670

Semidirect products G=N:Q with N=C4×S3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1(C3⋊S3) = C12.57S32φ: C3⋊S3/C32C2 ⊆ Out C4×S3144(C4xS3):1(C3:S3)432,668
(C4×S3)⋊2(C3⋊S3) = C12.58S32φ: C3⋊S3/C32C2 ⊆ Out C4×S372(C4xS3):2(C3:S3)432,669
(C4×S3)⋊3(C3⋊S3) = S3×C12⋊S3φ: C3⋊S3/C32C2 ⊆ Out C4×S372(C4xS3):3(C3:S3)432,671
(C4×S3)⋊4(C3⋊S3) = C12.73S32φ: C3⋊S3/C32C2 ⊆ Out C4×S372(C4xS3):4(C3:S3)432,667

Non-split extensions G=N.Q with N=C4×S3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C4×S3).1(C3⋊S3) = S3×C324Q8φ: C3⋊S3/C32C2 ⊆ Out C4×S3144(C4xS3).1(C3:S3)432,660
(C4×S3).2(C3⋊S3) = C337M4(2)φ: C3⋊S3/C32C2 ⊆ Out C4×S3144(C4xS3).2(C3:S3)432,433
(C4×S3).3(C3⋊S3) = S3×C324C8φ: trivial image144(C4xS3).3(C3:S3)432,430

׿
×
𝔽