direct product, metabelian, supersoluble, monomial, A-group
Aliases: C4×S3×C3⋊S3, C12⋊5S32, (S3×C12)⋊8S3, (C3×C12)⋊17D6, C3⋊Dic3⋊23D6, (S3×C6).43D6, C33⋊6(C22×C4), (C3×Dic3)⋊14D6, C33⋊5C4⋊7C22, (C32×C12)⋊11C22, (C32×C6).48C23, (C32×Dic3)⋊19C22, C3⋊3(C4×S32), C12⋊5(C2×C3⋊S3), C6.58(C2×S32), C32⋊8(S3×C2×C4), (C3×S3)⋊2(C4×S3), (S3×C3×C12)⋊13C2, D6.9(C2×C3⋊S3), (C12×C3⋊S3)⋊14C2, Dic3⋊5(C2×C3⋊S3), (C2×C3⋊S3).52D6, C33⋊8(C2×C4)⋊11C2, (S3×C32)⋊5(C2×C4), (S3×C3⋊Dic3)⋊11C2, (Dic3×C3⋊S3)⋊11C2, (C4×C33⋊C2)⋊8C2, C33⋊C2⋊3(C2×C4), C6.11(C22×C3⋊S3), (S3×C3×C6).27C22, (C6×C3⋊S3).54C22, (C3×C6).144(C22×S3), (C3×C3⋊Dic3)⋊17C22, (C2×C33⋊C2).15C22, C3⋊1(C2×C4×C3⋊S3), C2.1(C2×S3×C3⋊S3), (C2×S3×C3⋊S3).4C2, (C3×C3⋊S3)⋊6(C2×C4), SmallGroup(432,670)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C4×S3×C3⋊S3 |
Generators and relations for C4×S3×C3⋊S3
G = < a,b,c,d,e,f | a4=b3=c2=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 2136 in 388 conjugacy classes, 90 normal (32 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, S3, C6, C6, C6, C2×C4, C23, C32, C32, C32, Dic3, Dic3, C12, C12, C12, D6, D6, C2×C6, C22×C4, C3×S3, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C2×C4, S3×C32, C3×C3⋊S3, C33⋊C2, C32×C6, S3×Dic3, C6.D6, S3×C12, S3×C12, C4×C3⋊S3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C2×S32, C22×C3⋊S3, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, C32×C12, S3×C3⋊S3, S3×C3×C6, C6×C3⋊S3, C2×C33⋊C2, C4×S32, C2×C4×C3⋊S3, S3×C3⋊Dic3, Dic3×C3⋊S3, C33⋊8(C2×C4), S3×C3×C12, C12×C3⋊S3, C4×C33⋊C2, C2×S3×C3⋊S3, C4×S3×C3⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C3⋊S3, C4×S3, C22×S3, S32, C2×C3⋊S3, S3×C2×C4, C4×C3⋊S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, C4×S32, C2×C4×C3⋊S3, C2×S3×C3⋊S3, C4×S3×C3⋊S3
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 29 21)(2 30 22)(3 31 23)(4 32 24)(5 58 16)(6 59 13)(7 60 14)(8 57 15)(9 69 50)(10 70 51)(11 71 52)(12 72 49)(17 54 46)(18 55 47)(19 56 48)(20 53 45)(25 63 66)(26 64 67)(27 61 68)(28 62 65)(33 44 40)(34 41 37)(35 42 38)(36 43 39)
(1 18)(2 19)(3 20)(4 17)(5 69)(6 70)(7 71)(8 72)(9 58)(10 59)(11 60)(12 57)(13 51)(14 52)(15 49)(16 50)(21 55)(22 56)(23 53)(24 54)(25 42)(26 43)(27 44)(28 41)(29 47)(30 48)(31 45)(32 46)(33 61)(34 62)(35 63)(36 64)(37 65)(38 66)(39 67)(40 68)
(1 16 33)(2 13 34)(3 14 35)(4 15 36)(5 44 29)(6 41 30)(7 42 31)(8 43 32)(9 68 55)(10 65 56)(11 66 53)(12 67 54)(17 49 64)(18 50 61)(19 51 62)(20 52 63)(21 58 40)(22 59 37)(23 60 38)(24 57 39)(25 45 71)(26 46 72)(27 47 69)(28 48 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 16 58)(6 13 59)(7 14 60)(8 15 57)(9 69 50)(10 70 51)(11 71 52)(12 72 49)(17 54 46)(18 55 47)(19 56 48)(20 53 45)(25 63 66)(26 64 67)(27 61 68)(28 62 65)(33 40 44)(34 37 41)(35 38 42)(36 39 43)
(1 20)(2 17)(3 18)(4 19)(5 66)(6 67)(7 68)(8 65)(9 42)(10 43)(11 44)(12 41)(13 64)(14 61)(15 62)(16 63)(21 45)(22 46)(23 47)(24 48)(25 58)(26 59)(27 60)(28 57)(29 53)(30 54)(31 55)(32 56)(33 52)(34 49)(35 50)(36 51)(37 72)(38 69)(39 70)(40 71)
G:=sub<Sym(72)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,29,21)(2,30,22)(3,31,23)(4,32,24)(5,58,16)(6,59,13)(7,60,14)(8,57,15)(9,69,50)(10,70,51)(11,71,52)(12,72,49)(17,54,46)(18,55,47)(19,56,48)(20,53,45)(25,63,66)(26,64,67)(27,61,68)(28,62,65)(33,44,40)(34,41,37)(35,42,38)(36,43,39), (1,18)(2,19)(3,20)(4,17)(5,69)(6,70)(7,71)(8,72)(9,58)(10,59)(11,60)(12,57)(13,51)(14,52)(15,49)(16,50)(21,55)(22,56)(23,53)(24,54)(25,42)(26,43)(27,44)(28,41)(29,47)(30,48)(31,45)(32,46)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68), (1,16,33)(2,13,34)(3,14,35)(4,15,36)(5,44,29)(6,41,30)(7,42,31)(8,43,32)(9,68,55)(10,65,56)(11,66,53)(12,67,54)(17,49,64)(18,50,61)(19,51,62)(20,52,63)(21,58,40)(22,59,37)(23,60,38)(24,57,39)(25,45,71)(26,46,72)(27,47,69)(28,48,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,16,58)(6,13,59)(7,14,60)(8,15,57)(9,69,50)(10,70,51)(11,71,52)(12,72,49)(17,54,46)(18,55,47)(19,56,48)(20,53,45)(25,63,66)(26,64,67)(27,61,68)(28,62,65)(33,40,44)(34,37,41)(35,38,42)(36,39,43), (1,20)(2,17)(3,18)(4,19)(5,66)(6,67)(7,68)(8,65)(9,42)(10,43)(11,44)(12,41)(13,64)(14,61)(15,62)(16,63)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,57)(29,53)(30,54)(31,55)(32,56)(33,52)(34,49)(35,50)(36,51)(37,72)(38,69)(39,70)(40,71)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,29,21)(2,30,22)(3,31,23)(4,32,24)(5,58,16)(6,59,13)(7,60,14)(8,57,15)(9,69,50)(10,70,51)(11,71,52)(12,72,49)(17,54,46)(18,55,47)(19,56,48)(20,53,45)(25,63,66)(26,64,67)(27,61,68)(28,62,65)(33,44,40)(34,41,37)(35,42,38)(36,43,39), (1,18)(2,19)(3,20)(4,17)(5,69)(6,70)(7,71)(8,72)(9,58)(10,59)(11,60)(12,57)(13,51)(14,52)(15,49)(16,50)(21,55)(22,56)(23,53)(24,54)(25,42)(26,43)(27,44)(28,41)(29,47)(30,48)(31,45)(32,46)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68), (1,16,33)(2,13,34)(3,14,35)(4,15,36)(5,44,29)(6,41,30)(7,42,31)(8,43,32)(9,68,55)(10,65,56)(11,66,53)(12,67,54)(17,49,64)(18,50,61)(19,51,62)(20,52,63)(21,58,40)(22,59,37)(23,60,38)(24,57,39)(25,45,71)(26,46,72)(27,47,69)(28,48,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,16,58)(6,13,59)(7,14,60)(8,15,57)(9,69,50)(10,70,51)(11,71,52)(12,72,49)(17,54,46)(18,55,47)(19,56,48)(20,53,45)(25,63,66)(26,64,67)(27,61,68)(28,62,65)(33,40,44)(34,37,41)(35,38,42)(36,39,43), (1,20)(2,17)(3,18)(4,19)(5,66)(6,67)(7,68)(8,65)(9,42)(10,43)(11,44)(12,41)(13,64)(14,61)(15,62)(16,63)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,57)(29,53)(30,54)(31,55)(32,56)(33,52)(34,49)(35,50)(36,51)(37,72)(38,69)(39,70)(40,71) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,29,21),(2,30,22),(3,31,23),(4,32,24),(5,58,16),(6,59,13),(7,60,14),(8,57,15),(9,69,50),(10,70,51),(11,71,52),(12,72,49),(17,54,46),(18,55,47),(19,56,48),(20,53,45),(25,63,66),(26,64,67),(27,61,68),(28,62,65),(33,44,40),(34,41,37),(35,42,38),(36,43,39)], [(1,18),(2,19),(3,20),(4,17),(5,69),(6,70),(7,71),(8,72),(9,58),(10,59),(11,60),(12,57),(13,51),(14,52),(15,49),(16,50),(21,55),(22,56),(23,53),(24,54),(25,42),(26,43),(27,44),(28,41),(29,47),(30,48),(31,45),(32,46),(33,61),(34,62),(35,63),(36,64),(37,65),(38,66),(39,67),(40,68)], [(1,16,33),(2,13,34),(3,14,35),(4,15,36),(5,44,29),(6,41,30),(7,42,31),(8,43,32),(9,68,55),(10,65,56),(11,66,53),(12,67,54),(17,49,64),(18,50,61),(19,51,62),(20,52,63),(21,58,40),(22,59,37),(23,60,38),(24,57,39),(25,45,71),(26,46,72),(27,47,69),(28,48,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,16,58),(6,13,59),(7,14,60),(8,15,57),(9,69,50),(10,70,51),(11,71,52),(12,72,49),(17,54,46),(18,55,47),(19,56,48),(20,53,45),(25,63,66),(26,64,67),(27,61,68),(28,62,65),(33,40,44),(34,37,41),(35,38,42),(36,39,43)], [(1,20),(2,17),(3,18),(4,19),(5,66),(6,67),(7,68),(8,65),(9,42),(10,43),(11,44),(12,41),(13,64),(14,61),(15,62),(16,63),(21,45),(22,46),(23,47),(24,48),(25,58),(26,59),(27,60),(28,57),(29,53),(30,54),(31,55),(32,56),(33,52),(34,49),(35,50),(36,51),(37,72),(38,69),(39,70),(40,71)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 6J | ··· | 6Q | 6R | 6S | 12A | ··· | 12J | 12K | ··· | 12R | 12S | ··· | 12Z | 12AA | 12AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 3 | 3 | 9 | 9 | 27 | 27 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 3 | 3 | 9 | 9 | 27 | 27 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 18 | 18 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D6 | D6 | D6 | D6 | D6 | C4×S3 | C4×S3 | S32 | C2×S32 | C4×S32 |
kernel | C4×S3×C3⋊S3 | S3×C3⋊Dic3 | Dic3×C3⋊S3 | C33⋊8(C2×C4) | S3×C3×C12 | C12×C3⋊S3 | C4×C33⋊C2 | C2×S3×C3⋊S3 | S3×C3⋊S3 | S3×C12 | C4×C3⋊S3 | C3×Dic3 | C3⋊Dic3 | C3×C12 | S3×C6 | C2×C3⋊S3 | C3×S3 | C3⋊S3 | C12 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 4 | 1 | 4 | 1 | 5 | 4 | 1 | 16 | 4 | 4 | 4 | 8 |
Matrix representation of C4×S3×C3⋊S3 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C4×S3×C3⋊S3 in GAP, Magma, Sage, TeX
C_4\times S_3\times C_3\rtimes S_3
% in TeX
G:=Group("C4xS3xC3:S3");
// GroupNames label
G:=SmallGroup(432,670);
// by ID
G=gap.SmallGroup(432,670);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^3=c^2=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations