Extensions 1→N→G→Q→1 with N=D12 and Q=C3×S3

Direct product G=N×Q with N=D12 and Q=C3×S3
dρLabelID
C3×S3×D12484C3xS3xD12432,649

Semidirect products G=N:Q with N=D12 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
D121(C3×S3) = C3×C3⋊D24φ: C3×S3/C32C2 ⊆ Out D12484D12:1(C3xS3)432,419
D122(C3×S3) = C3×C322D8φ: C3×S3/C32C2 ⊆ Out D12484D12:2(C3xS3)432,418
D123(C3×S3) = C3×D12⋊S3φ: C3×S3/C32C2 ⊆ Out D12484D12:3(C3xS3)432,644
D124(C3×S3) = C3×D6⋊D6φ: C3×S3/C32C2 ⊆ Out D12484D12:4(C3xS3)432,650
D125(C3×S3) = C3×D125S3φ: trivial image484D12:5(C3xS3)432,643

Non-split extensions G=N.Q with N=D12 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
D12.1(C3×S3) = C3×D12.S3φ: C3×S3/C32C2 ⊆ Out D12484D12.1(C3xS3)432,421
D12.2(C3×S3) = C3×Dic6⋊S3φ: C3×S3/C32C2 ⊆ Out D12484D12.2(C3xS3)432,420

׿
×
𝔽