Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C4×S3

Direct product G=N×Q with N=C3⋊S3 and Q=C4×S3
dρLabelID
C4×S3×C3⋊S372C4xS3xC3:S3432,670

Semidirect products G=N:Q with N=C3⋊S3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C4×S3) = C4×C32⋊D6φ: C4×S3/C4S3 ⊆ Out C3⋊S3366C3:S3:(C4xS3)432,300
C3⋊S32(C4×S3) = Dic36S32φ: C4×S3/Dic3C2 ⊆ Out C3⋊S3488-C3:S3:2(C4xS3)432,596
C3⋊S33(C4×S3) = C4×C324D6φ: C4×S3/C12C2 ⊆ Out C3⋊S3484C3:S3:3(C4xS3)432,690
C3⋊S34(C4×S3) = S3×C6.D6φ: C4×S3/D6C2 ⊆ Out C3⋊S3248+C3:S3:4(C4xS3)432,595
C3⋊S35(C4×S3) = C2×S3×C32⋊C4φ: C4×S3/D6C2 ⊆ Out C3⋊S3248+C3:S3:5(C4xS3)432,753

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C4×S3) = S3×F9φ: C4×S3/S3C4 ⊆ Out C3⋊S32416+C3:S3.1(C4xS3)432,736
C3⋊S3.2(C4×S3) = C3⋊S3.2D12φ: C4×S3/C6C22 ⊆ Out C3⋊S3244C3:S3.2(C4xS3)432,579
C3⋊S3.3(C4×S3) = C33⋊C4⋊C4φ: C4×S3/C6C22 ⊆ Out C3⋊S3484C3:S3.3(C4xS3)432,581
C3⋊S3.4(C4×S3) = (C3×C6).8D12φ: C4×S3/C6C22 ⊆ Out C3⋊S3248+C3:S3.4(C4xS3)432,586
C3⋊S3.5(C4×S3) = C6.PSU3(𝔽2)φ: C4×S3/C6C22 ⊆ Out C3⋊S3488C3:S3.5(C4xS3)432,592
C3⋊S3.6(C4×S3) = Dic3×C32⋊C4φ: C4×S3/Dic3C2 ⊆ Out C3⋊S3488-C3:S3.6(C4xS3)432,567
C3⋊S3.7(C4×S3) = C4×C33⋊C4φ: C4×S3/C12C2 ⊆ Out C3⋊S3484C3:S3.7(C4xS3)432,637

׿
×
𝔽