Copied to
clipboard

G = C37⋊A4order 444 = 22·3·37

The semidirect product of C37 and A4 acting via A4/C22=C3

metabelian, soluble, monomial, A-group

Aliases: C37⋊A4, (C2×C74)⋊2C3, C22⋊(C37⋊C3), SmallGroup(444,14)

Series: Derived Chief Lower central Upper central

C1C2×C74 — C37⋊A4
C1C37C2×C74 — C37⋊A4
C2×C74 — C37⋊A4
C1

Generators and relations for C37⋊A4
 G = < a,b,c,d | a37=b2=c2=d3=1, ab=ba, ac=ca, dad-1=a10, dbd-1=bc=cb, dcd-1=b >

3C2
148C3
3C74
4C37⋊C3
37A4

Smallest permutation representation of C37⋊A4
On 148 points
Generators in S148
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)(112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148)
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 81)(32 82)(33 83)(34 84)(35 85)(36 86)(37 87)(38 116)(39 117)(40 118)(41 119)(42 120)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 127)(50 128)(51 129)(52 130)(53 131)(54 132)(55 133)(56 134)(57 135)(58 136)(59 137)(60 138)(61 139)(62 140)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 112)(72 113)(73 114)(74 115)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(75 133)(76 134)(77 135)(78 136)(79 137)(80 138)(81 139)(82 140)(83 141)(84 142)(85 143)(86 144)(87 145)(88 146)(89 147)(90 148)(91 112)(92 113)(93 114)(94 115)(95 116)(96 117)(97 118)(98 119)(99 120)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 127)(107 128)(108 129)(109 130)(110 131)(111 132)
(2 27 11)(3 16 21)(4 5 31)(6 20 14)(7 9 24)(8 35 34)(10 13 17)(12 28 37)(15 32 30)(18 36 23)(19 25 33)(22 29 26)(38 143 84)(39 132 94)(40 121 104)(41 147 77)(42 136 87)(43 125 97)(44 114 107)(45 140 80)(46 129 90)(47 118 100)(48 144 110)(49 133 83)(50 122 93)(51 148 103)(52 137 76)(53 126 86)(54 115 96)(55 141 106)(56 130 79)(57 119 89)(58 145 99)(59 134 109)(60 123 82)(61 112 92)(62 138 102)(63 127 75)(64 116 85)(65 142 95)(66 131 105)(67 120 78)(68 146 88)(69 135 98)(70 124 108)(71 113 81)(72 139 91)(73 128 101)(74 117 111)

G:=sub<Sym(148)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,116)(39,117)(40,118)(41,119)(42,120)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,112)(72,113)(73,114)(74,115), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,139)(82,140)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132), (2,27,11)(3,16,21)(4,5,31)(6,20,14)(7,9,24)(8,35,34)(10,13,17)(12,28,37)(15,32,30)(18,36,23)(19,25,33)(22,29,26)(38,143,84)(39,132,94)(40,121,104)(41,147,77)(42,136,87)(43,125,97)(44,114,107)(45,140,80)(46,129,90)(47,118,100)(48,144,110)(49,133,83)(50,122,93)(51,148,103)(52,137,76)(53,126,86)(54,115,96)(55,141,106)(56,130,79)(57,119,89)(58,145,99)(59,134,109)(60,123,82)(61,112,92)(62,138,102)(63,127,75)(64,116,85)(65,142,95)(66,131,105)(67,120,78)(68,146,88)(69,135,98)(70,124,108)(71,113,81)(72,139,91)(73,128,101)(74,117,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,116)(39,117)(40,118)(41,119)(42,120)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,112)(72,113)(73,114)(74,115), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,139)(82,140)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132), (2,27,11)(3,16,21)(4,5,31)(6,20,14)(7,9,24)(8,35,34)(10,13,17)(12,28,37)(15,32,30)(18,36,23)(19,25,33)(22,29,26)(38,143,84)(39,132,94)(40,121,104)(41,147,77)(42,136,87)(43,125,97)(44,114,107)(45,140,80)(46,129,90)(47,118,100)(48,144,110)(49,133,83)(50,122,93)(51,148,103)(52,137,76)(53,126,86)(54,115,96)(55,141,106)(56,130,79)(57,119,89)(58,145,99)(59,134,109)(60,123,82)(61,112,92)(62,138,102)(63,127,75)(64,116,85)(65,142,95)(66,131,105)(67,120,78)(68,146,88)(69,135,98)(70,124,108)(71,113,81)(72,139,91)(73,128,101)(74,117,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111),(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148)], [(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,81),(32,82),(33,83),(34,84),(35,85),(36,86),(37,87),(38,116),(39,117),(40,118),(41,119),(42,120),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,127),(50,128),(51,129),(52,130),(53,131),(54,132),(55,133),(56,134),(57,135),(58,136),(59,137),(60,138),(61,139),(62,140),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,112),(72,113),(73,114),(74,115)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(75,133),(76,134),(77,135),(78,136),(79,137),(80,138),(81,139),(82,140),(83,141),(84,142),(85,143),(86,144),(87,145),(88,146),(89,147),(90,148),(91,112),(92,113),(93,114),(94,115),(95,116),(96,117),(97,118),(98,119),(99,120),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,127),(107,128),(108,129),(109,130),(110,131),(111,132)], [(2,27,11),(3,16,21),(4,5,31),(6,20,14),(7,9,24),(8,35,34),(10,13,17),(12,28,37),(15,32,30),(18,36,23),(19,25,33),(22,29,26),(38,143,84),(39,132,94),(40,121,104),(41,147,77),(42,136,87),(43,125,97),(44,114,107),(45,140,80),(46,129,90),(47,118,100),(48,144,110),(49,133,83),(50,122,93),(51,148,103),(52,137,76),(53,126,86),(54,115,96),(55,141,106),(56,130,79),(57,119,89),(58,145,99),(59,134,109),(60,123,82),(61,112,92),(62,138,102),(63,127,75),(64,116,85),(65,142,95),(66,131,105),(67,120,78),(68,146,88),(69,135,98),(70,124,108),(71,113,81),(72,139,91),(73,128,101),(74,117,111)]])

52 conjugacy classes

class 1  2 3A3B37A···37L74A···74AJ
order123337···3774···74
size131481483···33···3

52 irreducible representations

dim11333
type++
imageC1C3A4C37⋊C3C37⋊A4
kernelC37⋊A4C2×C74C37C22C1
# reps1211236

Matrix representation of C37⋊A4 in GL3(𝔽223) generated by

010
001
163211
,
221153191
19121291
9112612
,
183871
7119648
4819666
,
100
18621872
21294
G:=sub<GL(3,GF(223))| [0,0,1,1,0,63,0,1,211],[221,191,91,153,212,126,191,91,12],[183,71,48,8,196,196,71,48,66],[1,186,212,0,218,9,0,72,4] >;

C37⋊A4 in GAP, Magma, Sage, TeX

C_{37}\rtimes A_4
% in TeX

G:=Group("C37:A4");
// GroupNames label

G:=SmallGroup(444,14);
// by ID

G=gap.SmallGroup(444,14);
# by ID

G:=PCGroup([4,-3,-2,2,-37,49,110,4995]);
// Polycyclic

G:=Group<a,b,c,d|a^37=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^10,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C37⋊A4 in TeX

׿
×
𝔽