Extensions 1→N→G→Q→1 with N=C7xQ8 and Q=C2xC4

Direct product G=NxQ with N=C7xQ8 and Q=C2xC4
dρLabelID
Q8xC2xC28448Q8xC2xC28448,1299

Semidirect products G=N:Q with N=C7xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C7xQ8):1(C2xC4) = Dic7:7SD16φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):1(C2xC4)448,322
(C7xQ8):2(C2xC4) = D7xQ8:C4φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):2(C2xC4)448,335
(C7xQ8):3(C2xC4) = Q8:(C4xD7)φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):3(C2xC4)448,337
(C7xQ8):4(C2xC4) = Q8:D7:C4φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):4(C2xC4)448,351
(C7xQ8):5(C2xC4) = D7xC4wrC2φ: C2xC4/C2C22 ⊆ Out C7xQ8564(C7xQ8):5(C2xC4)448,354
(C7xQ8):6(C2xC4) = SD16xDic7φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):6(C2xC4)448,695
(C7xQ8):7(C2xC4) = SD16:Dic7φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8):7(C2xC4)448,698
(C7xQ8):8(C2xC4) = C4xQ8:D7φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):8(C2xC4)448,559
(C7xQ8):9(C2xC4) = C42.56D14φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):9(C2xC4)448,560
(C7xQ8):10(C2xC4) = C4xQ8xD7φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):10(C2xC4)448,1024
(C7xQ8):11(C2xC4) = C4xQ8:2D7φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):11(C2xC4)448,1026
(C7xQ8):12(C2xC4) = C42.126D14φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):12(C2xC4)448,1027
(C7xQ8):13(C2xC4) = SD16xC28φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):13(C2xC4)448,846
(C7xQ8):14(C2xC4) = C7xSD16:C4φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8):14(C2xC4)448,848
(C7xQ8):15(C2xC4) = C2xQ8:Dic7φ: C2xC4/C22C2 ⊆ Out C7xQ8448(C7xQ8):15(C2xC4)448,758
(C7xQ8):16(C2xC4) = C4oD4:Dic7φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8):16(C2xC4)448,766
(C7xQ8):17(C2xC4) = C2xD4:2Dic7φ: C2xC4/C22C2 ⊆ Out C7xQ8112(C7xQ8):17(C2xC4)448,769
(C7xQ8):18(C2xC4) = C2xQ8xDic7φ: C2xC4/C22C2 ⊆ Out C7xQ8448(C7xQ8):18(C2xC4)448,1264
(C7xQ8):19(C2xC4) = C4oD4xDic7φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8):19(C2xC4)448,1279
(C7xQ8):20(C2xC4) = C14.1062- 1+4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8):20(C2xC4)448,1280
(C7xQ8):21(C2xC4) = C14xQ8:C4φ: C2xC4/C22C2 ⊆ Out C7xQ8448(C7xQ8):21(C2xC4)448,823
(C7xQ8):22(C2xC4) = C7xC23.36D4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8):22(C2xC4)448,825
(C7xQ8):23(C2xC4) = C14xC4wrC2φ: C2xC4/C22C2 ⊆ Out C7xQ8112(C7xQ8):23(C2xC4)448,828
(C7xQ8):24(C2xC4) = C4oD4xC28φ: trivial image224(C7xQ8):24(C2xC4)448,1300
(C7xQ8):25(C2xC4) = C7xC23.33C23φ: trivial image224(C7xQ8):25(C2xC4)448,1303

Non-split extensions G=N.Q with N=C7xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C7xQ8).1(C2xC4) = C7:Q16:C4φ: C2xC4/C2C22 ⊆ Out C7xQ8448(C7xQ8).1(C2xC4)448,323
(C7xQ8).2(C2xC4) = Dic7:4Q16φ: C2xC4/C2C22 ⊆ Out C7xQ8448(C7xQ8).2(C2xC4)448,324
(C7xQ8).3(C2xC4) = (Q8xD7):C4φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8).3(C2xC4)448,336
(C7xQ8).4(C2xC4) = Q8:2D7:C4φ: C2xC4/C2C22 ⊆ Out C7xQ8224(C7xQ8).4(C2xC4)448,338
(C7xQ8).5(C2xC4) = C42:D14φ: C2xC4/C2C22 ⊆ Out C7xQ81124(C7xQ8).5(C2xC4)448,355
(C7xQ8).6(C2xC4) = M4(2).22D14φ: C2xC4/C2C22 ⊆ Out C7xQ81124(C7xQ8).6(C2xC4)448,357
(C7xQ8).7(C2xC4) = C42.196D14φ: C2xC4/C2C22 ⊆ Out C7xQ81124(C7xQ8).7(C2xC4)448,358
(C7xQ8).8(C2xC4) = Q16xDic7φ: C2xC4/C2C22 ⊆ Out C7xQ8448(C7xQ8).8(C2xC4)448,717
(C7xQ8).9(C2xC4) = Q16:Dic7φ: C2xC4/C2C22 ⊆ Out C7xQ8448(C7xQ8).9(C2xC4)448,718
(C7xQ8).10(C2xC4) = D8:5Dic7φ: C2xC4/C2C22 ⊆ Out C7xQ81124(C7xQ8).10(C2xC4)448,730
(C7xQ8).11(C2xC4) = D8:4Dic7φ: C2xC4/C2C22 ⊆ Out C7xQ81124(C7xQ8).11(C2xC4)448,731
(C7xQ8).12(C2xC4) = C4xC7:Q16φ: C2xC4/C4C2 ⊆ Out C7xQ8448(C7xQ8).12(C2xC4)448,563
(C7xQ8).13(C2xC4) = C42.59D14φ: C2xC4/C4C2 ⊆ Out C7xQ8448(C7xQ8).13(C2xC4)448,564
(C7xQ8).14(C2xC4) = C56.93D4φ: C2xC4/C4C2 ⊆ Out C7xQ81124(C7xQ8).14(C2xC4)448,678
(C7xQ8).15(C2xC4) = C56.50D4φ: C2xC4/C4C2 ⊆ Out C7xQ81124(C7xQ8).15(C2xC4)448,679
(C7xQ8).16(C2xC4) = C42.125D14φ: C2xC4/C4C2 ⊆ Out C7xQ8224(C7xQ8).16(C2xC4)448,1025
(C7xQ8).17(C2xC4) = D7xC8oD4φ: C2xC4/C4C2 ⊆ Out C7xQ81124(C7xQ8).17(C2xC4)448,1202
(C7xQ8).18(C2xC4) = C56.49C23φ: C2xC4/C4C2 ⊆ Out C7xQ81124(C7xQ8).18(C2xC4)448,1203
(C7xQ8).19(C2xC4) = Q16xC28φ: C2xC4/C4C2 ⊆ Out C7xQ8448(C7xQ8).19(C2xC4)448,847
(C7xQ8).20(C2xC4) = C7xQ16:C4φ: C2xC4/C4C2 ⊆ Out C7xQ8448(C7xQ8).20(C2xC4)448,849
(C7xQ8).21(C2xC4) = C7xC8oD8φ: C2xC4/C4C2 ⊆ Out C7xQ81122(C7xQ8).21(C2xC4)448,851
(C7xQ8).22(C2xC4) = C7xC8.26D4φ: C2xC4/C4C2 ⊆ Out C7xQ81124(C7xQ8).22(C2xC4)448,852
(C7xQ8).23(C2xC4) = (Q8xC14):6C4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).23(C2xC4)448,759
(C7xQ8).24(C2xC4) = C28.(C2xD4)φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).24(C2xC4)448,767
(C7xQ8).25(C2xC4) = (D4xC14):9C4φ: C2xC4/C22C2 ⊆ Out C7xQ81124(C7xQ8).25(C2xC4)448,770
(C7xQ8).26(C2xC4) = C14.422- 1+4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).26(C2xC4)448,1265
(C7xQ8).27(C2xC4) = C2xQ8.Dic7φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).27(C2xC4)448,1271
(C7xQ8).28(C2xC4) = C28.76C24φ: C2xC4/C22C2 ⊆ Out C7xQ81124(C7xQ8).28(C2xC4)448,1272
(C7xQ8).29(C2xC4) = C7xC23.24D4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).29(C2xC4)448,824
(C7xQ8).30(C2xC4) = C7xC23.38D4φ: C2xC4/C22C2 ⊆ Out C7xQ8224(C7xQ8).30(C2xC4)448,827
(C7xQ8).31(C2xC4) = C7xC42:C22φ: C2xC4/C22C2 ⊆ Out C7xQ81124(C7xQ8).31(C2xC4)448,829
(C7xQ8).32(C2xC4) = C7xC23.32C23φ: trivial image224(C7xQ8).32(C2xC4)448,1302
(C7xQ8).33(C2xC4) = C14xC8oD4φ: trivial image224(C7xQ8).33(C2xC4)448,1350
(C7xQ8).34(C2xC4) = C7xQ8oM4(2)φ: trivial image1124(C7xQ8).34(C2xC4)448,1351

׿
x
:
Z
F
o
wr
Q
<