Copied to
clipboard

G = D84Dic7order 448 = 26·7

4th semidirect product of D8 and Dic7 acting via Dic7/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D84Dic7, Q164Dic7, SD162Dic7, (C7×D8)⋊6C4, C7⋊C8.36D4, (C7×Q16)⋊6C4, C4○D8.4D7, C56⋊C42C2, C75(C8.26D4), C56.31(C2×C4), (C7×SD16)⋊2C4, C4.218(D4×D7), C56.C49C2, C8.6(C2×Dic7), C4○D4.23D14, (C2×C8).100D14, C28.377(C2×D4), C14.100(C4×D4), Q8.Dic74C2, Q8.4(C2×Dic7), D4.4(C2×Dic7), C2.17(D4×Dic7), D42Dic75C2, C28.78(C22×C4), (C2×C56).45C22, C4.8(C22×Dic7), (C2×C28).468C23, C22.4(D42D7), (C4×Dic7).57C22, C4.Dic7.23C22, (C7×C4○D8).3C2, (C7×D4).11(C2×C4), (C7×Q8).11(C2×C4), (C2×C7⋊C8).169C22, (C2×C14).12(C4○D4), (C7×C4○D4).10C22, (C2×C4).555(C22×D7), SmallGroup(448,731)

Series: Derived Chief Lower central Upper central

C1C28 — D84Dic7
C1C7C14C28C2×C28C2×C7⋊C8Q8.Dic7 — D84Dic7
C7C14C28 — D84Dic7
C1C4C2×C4C4○D8

Generators and relations for D84Dic7
 G = < a,b,c,d | a8=b2=c14=1, d2=c7, bab=a-1, ac=ca, dad-1=a5, cbc-1=a4b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 340 in 104 conjugacy classes, 53 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C14, C14, C42, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C4○D4, Dic7, C28, C28, C2×C14, C2×C14, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8.26D4, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, C4×Dic7, C2×C56, C7×D8, C7×SD16, C7×Q16, C7×C4○D4, C56⋊C4, C56.C4, D42Dic7, Q8.Dic7, C7×C4○D8, D84Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, Dic7, D14, C4×D4, C2×Dic7, C22×D7, C8.26D4, D4×D7, D42D7, C22×Dic7, D4×Dic7, D84Dic7

Smallest permutation representation of D84Dic7
On 112 points
Generators in S112
(1 31 15 52 26 38 9 45)(2 32 16 53 27 39 10 46)(3 33 17 54 28 40 11 47)(4 34 18 55 22 41 12 48)(5 35 19 56 23 42 13 49)(6 29 20 50 24 36 14 43)(7 30 21 51 25 37 8 44)(57 75 87 101 64 82 94 108)(58 76 88 102 65 83 95 109)(59 77 89 103 66 84 96 110)(60 78 90 104 67 71 97 111)(61 79 91 105 68 72 98 112)(62 80 92 106 69 73 85 99)(63 81 93 107 70 74 86 100)
(1 61)(2 69)(3 63)(4 57)(5 65)(6 59)(7 67)(8 97)(9 91)(10 85)(11 93)(12 87)(13 95)(14 89)(15 98)(16 92)(17 86)(18 94)(19 88)(20 96)(21 90)(22 64)(23 58)(24 66)(25 60)(26 68)(27 62)(28 70)(29 110)(30 104)(31 112)(32 106)(33 100)(34 108)(35 102)(36 103)(37 111)(38 105)(39 99)(40 107)(41 101)(42 109)(43 77)(44 71)(45 79)(46 73)(47 81)(48 75)(49 83)(50 84)(51 78)(52 72)(53 80)(54 74)(55 82)(56 76)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 9)(10 14)(11 13)(15 21)(16 20)(17 19)(23 28)(24 27)(25 26)(29 39)(30 38)(31 37)(32 36)(33 42)(34 41)(35 40)(43 53)(44 52)(45 51)(46 50)(47 56)(48 55)(49 54)(57 87 64 94)(58 86 65 93)(59 85 66 92)(60 98 67 91)(61 97 68 90)(62 96 69 89)(63 95 70 88)(71 112 78 105)(72 111 79 104)(73 110 80 103)(74 109 81 102)(75 108 82 101)(76 107 83 100)(77 106 84 99)

G:=sub<Sym(112)| (1,31,15,52,26,38,9,45)(2,32,16,53,27,39,10,46)(3,33,17,54,28,40,11,47)(4,34,18,55,22,41,12,48)(5,35,19,56,23,42,13,49)(6,29,20,50,24,36,14,43)(7,30,21,51,25,37,8,44)(57,75,87,101,64,82,94,108)(58,76,88,102,65,83,95,109)(59,77,89,103,66,84,96,110)(60,78,90,104,67,71,97,111)(61,79,91,105,68,72,98,112)(62,80,92,106,69,73,85,99)(63,81,93,107,70,74,86,100), (1,61)(2,69)(3,63)(4,57)(5,65)(6,59)(7,67)(8,97)(9,91)(10,85)(11,93)(12,87)(13,95)(14,89)(15,98)(16,92)(17,86)(18,94)(19,88)(20,96)(21,90)(22,64)(23,58)(24,66)(25,60)(26,68)(27,62)(28,70)(29,110)(30,104)(31,112)(32,106)(33,100)(34,108)(35,102)(36,103)(37,111)(38,105)(39,99)(40,107)(41,101)(42,109)(43,77)(44,71)(45,79)(46,73)(47,81)(48,75)(49,83)(50,84)(51,78)(52,72)(53,80)(54,74)(55,82)(56,76), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,9)(10,14)(11,13)(15,21)(16,20)(17,19)(23,28)(24,27)(25,26)(29,39)(30,38)(31,37)(32,36)(33,42)(34,41)(35,40)(43,53)(44,52)(45,51)(46,50)(47,56)(48,55)(49,54)(57,87,64,94)(58,86,65,93)(59,85,66,92)(60,98,67,91)(61,97,68,90)(62,96,69,89)(63,95,70,88)(71,112,78,105)(72,111,79,104)(73,110,80,103)(74,109,81,102)(75,108,82,101)(76,107,83,100)(77,106,84,99)>;

G:=Group( (1,31,15,52,26,38,9,45)(2,32,16,53,27,39,10,46)(3,33,17,54,28,40,11,47)(4,34,18,55,22,41,12,48)(5,35,19,56,23,42,13,49)(6,29,20,50,24,36,14,43)(7,30,21,51,25,37,8,44)(57,75,87,101,64,82,94,108)(58,76,88,102,65,83,95,109)(59,77,89,103,66,84,96,110)(60,78,90,104,67,71,97,111)(61,79,91,105,68,72,98,112)(62,80,92,106,69,73,85,99)(63,81,93,107,70,74,86,100), (1,61)(2,69)(3,63)(4,57)(5,65)(6,59)(7,67)(8,97)(9,91)(10,85)(11,93)(12,87)(13,95)(14,89)(15,98)(16,92)(17,86)(18,94)(19,88)(20,96)(21,90)(22,64)(23,58)(24,66)(25,60)(26,68)(27,62)(28,70)(29,110)(30,104)(31,112)(32,106)(33,100)(34,108)(35,102)(36,103)(37,111)(38,105)(39,99)(40,107)(41,101)(42,109)(43,77)(44,71)(45,79)(46,73)(47,81)(48,75)(49,83)(50,84)(51,78)(52,72)(53,80)(54,74)(55,82)(56,76), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,9)(10,14)(11,13)(15,21)(16,20)(17,19)(23,28)(24,27)(25,26)(29,39)(30,38)(31,37)(32,36)(33,42)(34,41)(35,40)(43,53)(44,52)(45,51)(46,50)(47,56)(48,55)(49,54)(57,87,64,94)(58,86,65,93)(59,85,66,92)(60,98,67,91)(61,97,68,90)(62,96,69,89)(63,95,70,88)(71,112,78,105)(72,111,79,104)(73,110,80,103)(74,109,81,102)(75,108,82,101)(76,107,83,100)(77,106,84,99) );

G=PermutationGroup([[(1,31,15,52,26,38,9,45),(2,32,16,53,27,39,10,46),(3,33,17,54,28,40,11,47),(4,34,18,55,22,41,12,48),(5,35,19,56,23,42,13,49),(6,29,20,50,24,36,14,43),(7,30,21,51,25,37,8,44),(57,75,87,101,64,82,94,108),(58,76,88,102,65,83,95,109),(59,77,89,103,66,84,96,110),(60,78,90,104,67,71,97,111),(61,79,91,105,68,72,98,112),(62,80,92,106,69,73,85,99),(63,81,93,107,70,74,86,100)], [(1,61),(2,69),(3,63),(4,57),(5,65),(6,59),(7,67),(8,97),(9,91),(10,85),(11,93),(12,87),(13,95),(14,89),(15,98),(16,92),(17,86),(18,94),(19,88),(20,96),(21,90),(22,64),(23,58),(24,66),(25,60),(26,68),(27,62),(28,70),(29,110),(30,104),(31,112),(32,106),(33,100),(34,108),(35,102),(36,103),(37,111),(38,105),(39,99),(40,107),(41,101),(42,109),(43,77),(44,71),(45,79),(46,73),(47,81),(48,75),(49,83),(50,84),(51,78),(52,72),(53,80),(54,74),(55,82),(56,76)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,9),(10,14),(11,13),(15,21),(16,20),(17,19),(23,28),(24,27),(25,26),(29,39),(30,38),(31,37),(32,36),(33,42),(34,41),(35,40),(43,53),(44,52),(45,51),(46,50),(47,56),(48,55),(49,54),(57,87,64,94),(58,86,65,93),(59,85,66,92),(60,98,67,91),(61,97,68,90),(62,96,69,89),(63,95,70,88),(71,112,78,105),(72,111,79,104),(73,110,80,103),(74,109,81,102),(75,108,82,101),(76,107,83,100),(77,106,84,99)]])

64 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H8I8J14A14B14C14D14E14F14G···14L28A···28F28G28H28I28J···28O56A···56L
order122224444444777888888888814141414141414···1428···2828282828···2856···56
size112441124428282224414141414282828282224448···82···24448···84···4

64 irreducible representations

dim111111111222222224444
type+++++++++---++-
imageC1C2C2C2C2C2C4C4C4D4D7C4○D4D14Dic7Dic7Dic7D14C8.26D4D4×D7D42D7D84Dic7
kernelD84Dic7C56⋊C4C56.C4D42Dic7Q8.Dic7C7×C4○D8C7×D8C7×SD16C7×Q16C7⋊C8C4○D8C2×C14C2×C8D8SD16Q16C4○D4C7C4C22C1
# reps1112212422323363623312

Matrix representation of D84Dic7 in GL4(𝔽113) generated by

471000
946600
17706437
2337649
,
98761212
1427068
17706437
64806437
,
111200
813300
264401
1054311279
,
709800
484300
76821120
11083341
G:=sub<GL(4,GF(113))| [47,94,17,2,10,66,70,33,0,0,64,76,0,0,37,49],[98,14,17,64,76,27,70,80,12,0,64,64,12,68,37,37],[1,81,26,105,112,33,44,43,0,0,0,112,0,0,1,79],[70,48,76,110,98,43,82,83,0,0,112,34,0,0,0,1] >;

D84Dic7 in GAP, Magma, Sage, TeX

D_8\rtimes_4{\rm Dic}_7
% in TeX

G:=Group("D8:4Dic7");
// GroupNames label

G:=SmallGroup(448,731);
// by ID

G=gap.SmallGroup(448,731);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,758,219,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=1,d^2=c^7,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^5,c*b*c^-1=a^4*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽