extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C7×Q8) = C7×C4.9C42 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).1(C7xQ8) | 448,141 |
(C2×C4).2(C7×Q8) = C7×C22.C42 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).2(C7xQ8) | 448,147 |
(C2×C4).3(C7×Q8) = C7×M4(2)⋊4C4 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).3(C7xQ8) | 448,148 |
(C2×C4).4(C7×Q8) = C7×C23.81C23 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).4(C7xQ8) | 448,806 |
(C2×C4).5(C7×Q8) = C7×C23.83C23 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).5(C7xQ8) | 448,808 |
(C2×C4).6(C7×Q8) = C7×M4(2)⋊C4 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).6(C7xQ8) | 448,836 |
(C2×C4).7(C7×Q8) = C7×M4(2).C4 | φ: C7×Q8/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).7(C7xQ8) | 448,838 |
(C2×C4).8(C7×Q8) = C7×C8⋊2C8 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).8(C7xQ8) | 448,138 |
(C2×C4).9(C7×Q8) = C7×C8⋊1C8 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).9(C7xQ8) | 448,139 |
(C2×C4).10(C7×Q8) = C7×C23.63C23 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).10(C7xQ8) | 448,795 |
(C2×C4).11(C7×Q8) = C7×C23.65C23 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).11(C7xQ8) | 448,797 |
(C2×C4).12(C7×Q8) = C7×C42⋊6C4 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).12(C7xQ8) | 448,143 |
(C2×C4).13(C7×Q8) = C7×C22.4Q16 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).13(C7xQ8) | 448,144 |
(C2×C4).14(C7×Q8) = C7×C42⋊8C4 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).14(C7xQ8) | 448,790 |
(C2×C4).15(C7×Q8) = C7×C42⋊9C4 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).15(C7xQ8) | 448,792 |
(C2×C4).16(C7×Q8) = C7×C4⋊M4(2) | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).16(C7xQ8) | 448,831 |
(C2×C4).17(C7×Q8) = C7×C42.6C22 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).17(C7xQ8) | 448,832 |
(C2×C4).18(C7×Q8) = C14×C4.Q8 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).18(C7xQ8) | 448,833 |
(C2×C4).19(C7×Q8) = C14×C2.D8 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).19(C7xQ8) | 448,834 |
(C2×C4).20(C7×Q8) = C7×C23.25D4 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).20(C7xQ8) | 448,835 |
(C2×C4).21(C7×Q8) = C14×C8.C4 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).21(C7xQ8) | 448,837 |
(C2×C4).22(C7×Q8) = C14×C42.C2 | φ: C7×Q8/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).22(C7xQ8) | 448,1310 |
(C2×C4).23(C7×Q8) = C7×C22.7C42 | central extension (φ=1) | 448 | | (C2xC4).23(C7xQ8) | 448,140 |
(C2×C4).24(C7×Q8) = C4⋊C4×C28 | central extension (φ=1) | 448 | | (C2xC4).24(C7xQ8) | 448,786 |
(C2×C4).25(C7×Q8) = C14×C4⋊C8 | central extension (φ=1) | 448 | | (C2xC4).25(C7xQ8) | 448,830 |