Copied to
clipboard

G = C7×M4(2)⋊4C4order 448 = 26·7

Direct product of C7 and M4(2)⋊4C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×M4(2)⋊4C4, M4(2)⋊4C28, (C2×C8)⋊2C28, (C2×C56)⋊4C4, C28.54(C4⋊C4), (C2×C28).38Q8, (C2×C28).510D4, C22⋊C4.1C28, C22.3(C4×C28), C23.7(C2×C28), (C7×M4(2))⋊10C4, (C2×C14).10C42, C42⋊C2.3C14, (C2×M4(2)).9C14, C28.106(C22⋊C4), (C14×M4(2)).21C2, (C22×C28).389C22, C14.28(C2.C42), C4.5(C7×C4⋊C4), (C2×C4).3(C7×Q8), C22.6(C7×C4⋊C4), (C2×C4).15(C2×C28), (C2×C4).115(C7×D4), (C7×C22⋊C4).2C4, C4.27(C7×C22⋊C4), (C2×C14).23(C4⋊C4), (C2×C28).326(C2×C4), C22.9(C7×C22⋊C4), (C22×C4).19(C2×C14), (C22×C14).18(C2×C4), C2.9(C7×C2.C42), (C2×C14).72(C22⋊C4), (C7×C42⋊C2).17C2, SmallGroup(448,148)

Series: Derived Chief Lower central Upper central

C1C22 — C7×M4(2)⋊4C4
C1C2C4C2×C4C22×C4C22×C28C7×C42⋊C2 — C7×M4(2)⋊4C4
C1C2C22 — C7×M4(2)⋊4C4
C1C28C22×C28 — C7×M4(2)⋊4C4

Generators and relations for C7×M4(2)⋊4C4
 G = < a,b,c,d | a7=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b5, dbd-1=bc, dcd-1=b4c >

Subgroups: 138 in 90 conjugacy classes, 54 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C42⋊C2, C2×M4(2), C56, C2×C28, C2×C28, C22×C14, M4(2)⋊4C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C7×C42⋊C2, C14×M4(2), C7×M4(2)⋊4C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, Q8, C14, C42, C22⋊C4, C4⋊C4, C28, C2×C14, C2.C42, C2×C28, C7×D4, C7×Q8, M4(2)⋊4C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C7×C2.C42, C7×M4(2)⋊4C4

Smallest permutation representation of C7×M4(2)⋊4C4
On 112 points
Generators in S112
(1 63 111 54 103 46 95)(2 64 112 55 104 47 96)(3 57 105 56 97 48 89)(4 58 106 49 98 41 90)(5 59 107 50 99 42 91)(6 60 108 51 100 43 92)(7 61 109 52 101 44 93)(8 62 110 53 102 45 94)(9 37 88 31 80 23 72)(10 38 81 32 73 24 65)(11 39 82 25 74 17 66)(12 40 83 26 75 18 67)(13 33 84 27 76 19 68)(14 34 85 28 77 20 69)(15 35 86 29 78 21 70)(16 36 87 30 79 22 71)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 65)(2 70)(3 67)(4 72)(5 69)(6 66)(7 71)(8 68)(9 58)(10 63)(11 60)(12 57)(13 62)(14 59)(15 64)(16 61)(17 92)(18 89)(19 94)(20 91)(21 96)(22 93)(23 90)(24 95)(25 100)(26 97)(27 102)(28 99)(29 104)(30 101)(31 98)(32 103)(33 110)(34 107)(35 112)(36 109)(37 106)(38 111)(39 108)(40 105)(41 80)(42 77)(43 74)(44 79)(45 76)(46 73)(47 78)(48 75)(49 88)(50 85)(51 82)(52 87)(53 84)(54 81)(55 86)(56 83)
(1 67 5 71)(2 4)(3 65 7 69)(6 8)(9 11)(10 61 14 57)(12 59 16 63)(13 15)(17 23)(18 91 22 95)(19 21)(20 89 24 93)(25 31)(26 99 30 103)(27 29)(28 97 32 101)(33 35)(34 105 38 109)(36 111 40 107)(37 39)(41 47)(42 79 46 75)(43 45)(44 77 48 73)(49 55)(50 87 54 83)(51 53)(52 85 56 81)(58 64)(60 62)(66 72)(68 70)(74 80)(76 78)(82 88)(84 86)(90 96)(92 94)(98 104)(100 102)(106 112)(108 110)

G:=sub<Sym(112)| (1,63,111,54,103,46,95)(2,64,112,55,104,47,96)(3,57,105,56,97,48,89)(4,58,106,49,98,41,90)(5,59,107,50,99,42,91)(6,60,108,51,100,43,92)(7,61,109,52,101,44,93)(8,62,110,53,102,45,94)(9,37,88,31,80,23,72)(10,38,81,32,73,24,65)(11,39,82,25,74,17,66)(12,40,83,26,75,18,67)(13,33,84,27,76,19,68)(14,34,85,28,77,20,69)(15,35,86,29,78,21,70)(16,36,87,30,79,22,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,65)(2,70)(3,67)(4,72)(5,69)(6,66)(7,71)(8,68)(9,58)(10,63)(11,60)(12,57)(13,62)(14,59)(15,64)(16,61)(17,92)(18,89)(19,94)(20,91)(21,96)(22,93)(23,90)(24,95)(25,100)(26,97)(27,102)(28,99)(29,104)(30,101)(31,98)(32,103)(33,110)(34,107)(35,112)(36,109)(37,106)(38,111)(39,108)(40,105)(41,80)(42,77)(43,74)(44,79)(45,76)(46,73)(47,78)(48,75)(49,88)(50,85)(51,82)(52,87)(53,84)(54,81)(55,86)(56,83), (1,67,5,71)(2,4)(3,65,7,69)(6,8)(9,11)(10,61,14,57)(12,59,16,63)(13,15)(17,23)(18,91,22,95)(19,21)(20,89,24,93)(25,31)(26,99,30,103)(27,29)(28,97,32,101)(33,35)(34,105,38,109)(36,111,40,107)(37,39)(41,47)(42,79,46,75)(43,45)(44,77,48,73)(49,55)(50,87,54,83)(51,53)(52,85,56,81)(58,64)(60,62)(66,72)(68,70)(74,80)(76,78)(82,88)(84,86)(90,96)(92,94)(98,104)(100,102)(106,112)(108,110)>;

G:=Group( (1,63,111,54,103,46,95)(2,64,112,55,104,47,96)(3,57,105,56,97,48,89)(4,58,106,49,98,41,90)(5,59,107,50,99,42,91)(6,60,108,51,100,43,92)(7,61,109,52,101,44,93)(8,62,110,53,102,45,94)(9,37,88,31,80,23,72)(10,38,81,32,73,24,65)(11,39,82,25,74,17,66)(12,40,83,26,75,18,67)(13,33,84,27,76,19,68)(14,34,85,28,77,20,69)(15,35,86,29,78,21,70)(16,36,87,30,79,22,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,65)(2,70)(3,67)(4,72)(5,69)(6,66)(7,71)(8,68)(9,58)(10,63)(11,60)(12,57)(13,62)(14,59)(15,64)(16,61)(17,92)(18,89)(19,94)(20,91)(21,96)(22,93)(23,90)(24,95)(25,100)(26,97)(27,102)(28,99)(29,104)(30,101)(31,98)(32,103)(33,110)(34,107)(35,112)(36,109)(37,106)(38,111)(39,108)(40,105)(41,80)(42,77)(43,74)(44,79)(45,76)(46,73)(47,78)(48,75)(49,88)(50,85)(51,82)(52,87)(53,84)(54,81)(55,86)(56,83), (1,67,5,71)(2,4)(3,65,7,69)(6,8)(9,11)(10,61,14,57)(12,59,16,63)(13,15)(17,23)(18,91,22,95)(19,21)(20,89,24,93)(25,31)(26,99,30,103)(27,29)(28,97,32,101)(33,35)(34,105,38,109)(36,111,40,107)(37,39)(41,47)(42,79,46,75)(43,45)(44,77,48,73)(49,55)(50,87,54,83)(51,53)(52,85,56,81)(58,64)(60,62)(66,72)(68,70)(74,80)(76,78)(82,88)(84,86)(90,96)(92,94)(98,104)(100,102)(106,112)(108,110) );

G=PermutationGroup([[(1,63,111,54,103,46,95),(2,64,112,55,104,47,96),(3,57,105,56,97,48,89),(4,58,106,49,98,41,90),(5,59,107,50,99,42,91),(6,60,108,51,100,43,92),(7,61,109,52,101,44,93),(8,62,110,53,102,45,94),(9,37,88,31,80,23,72),(10,38,81,32,73,24,65),(11,39,82,25,74,17,66),(12,40,83,26,75,18,67),(13,33,84,27,76,19,68),(14,34,85,28,77,20,69),(15,35,86,29,78,21,70),(16,36,87,30,79,22,71)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,65),(2,70),(3,67),(4,72),(5,69),(6,66),(7,71),(8,68),(9,58),(10,63),(11,60),(12,57),(13,62),(14,59),(15,64),(16,61),(17,92),(18,89),(19,94),(20,91),(21,96),(22,93),(23,90),(24,95),(25,100),(26,97),(27,102),(28,99),(29,104),(30,101),(31,98),(32,103),(33,110),(34,107),(35,112),(36,109),(37,106),(38,111),(39,108),(40,105),(41,80),(42,77),(43,74),(44,79),(45,76),(46,73),(47,78),(48,75),(49,88),(50,85),(51,82),(52,87),(53,84),(54,81),(55,86),(56,83)], [(1,67,5,71),(2,4),(3,65,7,69),(6,8),(9,11),(10,61,14,57),(12,59,16,63),(13,15),(17,23),(18,91,22,95),(19,21),(20,89,24,93),(25,31),(26,99,30,103),(27,29),(28,97,32,101),(33,35),(34,105,38,109),(36,111,40,107),(37,39),(41,47),(42,79,46,75),(43,45),(44,77,48,73),(49,55),(50,87,54,83),(51,53),(52,85,56,81),(58,64),(60,62),(66,72),(68,70),(74,80),(76,78),(82,88),(84,86),(90,96),(92,94),(98,104),(100,102),(106,112),(108,110)]])

154 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A···7F8A···8H14A···14F14G···14X28A···28L28M···28AD28AE···28BB56A···56AV
order122224444444447···78···814···1414···1428···2828···2828···2856···56
size112221122244441···14···41···12···21···12···24···44···4

154 irreducible representations

dim111111111111222244
type++++-
imageC1C2C2C4C4C4C7C14C14C28C28C28D4Q8C7×D4C7×Q8M4(2)⋊4C4C7×M4(2)⋊4C4
kernelC7×M4(2)⋊4C4C7×C42⋊C2C14×M4(2)C7×C22⋊C4C2×C56C7×M4(2)M4(2)⋊4C4C42⋊C2C2×M4(2)C22⋊C4C2×C8M4(2)C2×C28C2×C28C2×C4C2×C4C7C1
# reps112444661224242431186212

Matrix representation of C7×M4(2)⋊4C4 in GL4(𝔽113) generated by

49000
04900
00490
00049
,
1501110
150112112
10515980
70980
,
111100
011200
09801
09810
,
15000
159800
1120098
00150
G:=sub<GL(4,GF(113))| [49,0,0,0,0,49,0,0,0,0,49,0,0,0,0,49],[15,15,105,7,0,0,15,0,111,112,98,98,0,112,0,0],[1,0,0,0,111,112,98,98,0,0,0,1,0,0,1,0],[15,15,112,0,0,98,0,0,0,0,0,15,0,0,98,0] >;

C7×M4(2)⋊4C4 in GAP, Magma, Sage, TeX

C_7\times M_4(2)\rtimes_4C_4
% in TeX

G:=Group("C7xM4(2):4C4");
// GroupNames label

G:=SmallGroup(448,148);
// by ID

G=gap.SmallGroup(448,148);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,792,7059,4911,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^5,d*b*d^-1=b*c,d*c*d^-1=b^4*c>;
// generators/relations

׿
×
𝔽