Extensions 1→N→G→Q→1 with N=M5(2) and Q=C14

Direct product G=N×Q with N=M5(2) and Q=C14
dρLabelID
C14×M5(2)224C14xM5(2)448,911

Semidirect products G=N:Q with N=M5(2) and Q=C14
extensionφ:Q→Out NdρLabelID
M5(2)⋊1C14 = C7×C16⋊C22φ: C14/C7C2 ⊆ Out M5(2)1124M5(2):1C14448,917
M5(2)⋊2C14 = C7×Q32⋊C2φ: C14/C7C2 ⊆ Out M5(2)2244M5(2):2C14448,918
M5(2)⋊3C14 = C7×C23.C8φ: C14/C7C2 ⊆ Out M5(2)1124M5(2):3C14448,153
M5(2)⋊4C14 = C7×D4.C8φ: C14/C7C2 ⊆ Out M5(2)2242M5(2):4C14448,154
M5(2)⋊5C14 = C7×D82C4φ: C14/C7C2 ⊆ Out M5(2)1124M5(2):5C14448,164
M5(2)⋊6C14 = C7×M5(2)⋊C2φ: C14/C7C2 ⊆ Out M5(2)1124M5(2):6C14448,165
M5(2)⋊7C14 = C7×D4○C16φ: trivial image2242M5(2):7C14448,912

Non-split extensions G=N.Q with N=M5(2) and Q=C14
extensionφ:Q→Out NdρLabelID
M5(2).1C14 = C7×C8.Q8φ: C14/C7C2 ⊆ Out M5(2)1124M5(2).1C14448,169
M5(2).2C14 = C7×C16⋊C4φ: C14/C7C2 ⊆ Out M5(2)1124M5(2).2C14448,151
M5(2).3C14 = C7×C8.17D4φ: C14/C7C2 ⊆ Out M5(2)2244M5(2).3C14448,166
M5(2).4C14 = C7×C8.C8φ: C14/C7C2 ⊆ Out M5(2)1122M5(2).4C14448,168

׿
×
𝔽