Copied to
clipboard

G = C7×C8.C8order 448 = 26·7

Direct product of C7 and C8.C8

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C8.C8, C8.1C56, C56.7C8, C56.22Q8, C56.109D4, C42.8C28, M5(2).4C14, C8.6(C7×Q8), C4.8(C2×C56), (C2×C8).9C28, C8.29(C7×D4), (C4×C8).10C14, (C4×C56).28C2, (C4×C28).23C4, C28.48(C2×C8), (C2×C56).28C4, C28.68(C4⋊C4), C14.15(C4⋊C8), (C7×M5(2)).8C2, (C2×C56).443C22, (C2×C14).17M4(2), C22.5(C7×M4(2)), C2.5(C7×C4⋊C8), C4.19(C7×C4⋊C4), (C2×C8).97(C2×C14), (C2×C4).68(C2×C28), (C2×C28).329(C2×C4), SmallGroup(448,168)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C8.C8
C1C2C4C8C2×C8C2×C56C7×M5(2) — C7×C8.C8
C1C2C4 — C7×C8.C8
C1C56C2×C56 — C7×C8.C8

Generators and relations for C7×C8.C8
 G = < a,b,c | a7=b8=1, c8=b4, ab=ba, ac=ca, cbc-1=b3 >

2C2
2C4
2C4
2C14
2C2×C4
2C28
2C28
2C16
2C16
2C2×C28
2C112
2C112

Smallest permutation representation of C7×C8.C8
On 112 points
Generators in S112
(1 55 100 79 24 37 91)(2 56 101 80 25 38 92)(3 57 102 65 26 39 93)(4 58 103 66 27 40 94)(5 59 104 67 28 41 95)(6 60 105 68 29 42 96)(7 61 106 69 30 43 81)(8 62 107 70 31 44 82)(9 63 108 71 32 45 83)(10 64 109 72 17 46 84)(11 49 110 73 18 47 85)(12 50 111 74 19 48 86)(13 51 112 75 20 33 87)(14 52 97 76 21 34 88)(15 53 98 77 22 35 89)(16 54 99 78 23 36 90)
(1 3 5 7 9 11 13 15)(2 8 14 4 10 16 6 12)(17 23 29 19 25 31 21 27)(18 20 22 24 26 28 30 32)(33 35 37 39 41 43 45 47)(34 40 46 36 42 48 38 44)(49 51 53 55 57 59 61 63)(50 56 62 52 58 64 54 60)(65 67 69 71 73 75 77 79)(66 72 78 68 74 80 70 76)(81 83 85 87 89 91 93 95)(82 88 94 84 90 96 86 92)(97 103 109 99 105 111 101 107)(98 100 102 104 106 108 110 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,55,100,79,24,37,91)(2,56,101,80,25,38,92)(3,57,102,65,26,39,93)(4,58,103,66,27,40,94)(5,59,104,67,28,41,95)(6,60,105,68,29,42,96)(7,61,106,69,30,43,81)(8,62,107,70,31,44,82)(9,63,108,71,32,45,83)(10,64,109,72,17,46,84)(11,49,110,73,18,47,85)(12,50,111,74,19,48,86)(13,51,112,75,20,33,87)(14,52,97,76,21,34,88)(15,53,98,77,22,35,89)(16,54,99,78,23,36,90), (1,3,5,7,9,11,13,15)(2,8,14,4,10,16,6,12)(17,23,29,19,25,31,21,27)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,40,46,36,42,48,38,44)(49,51,53,55,57,59,61,63)(50,56,62,52,58,64,54,60)(65,67,69,71,73,75,77,79)(66,72,78,68,74,80,70,76)(81,83,85,87,89,91,93,95)(82,88,94,84,90,96,86,92)(97,103,109,99,105,111,101,107)(98,100,102,104,106,108,110,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,55,100,79,24,37,91)(2,56,101,80,25,38,92)(3,57,102,65,26,39,93)(4,58,103,66,27,40,94)(5,59,104,67,28,41,95)(6,60,105,68,29,42,96)(7,61,106,69,30,43,81)(8,62,107,70,31,44,82)(9,63,108,71,32,45,83)(10,64,109,72,17,46,84)(11,49,110,73,18,47,85)(12,50,111,74,19,48,86)(13,51,112,75,20,33,87)(14,52,97,76,21,34,88)(15,53,98,77,22,35,89)(16,54,99,78,23,36,90), (1,3,5,7,9,11,13,15)(2,8,14,4,10,16,6,12)(17,23,29,19,25,31,21,27)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,40,46,36,42,48,38,44)(49,51,53,55,57,59,61,63)(50,56,62,52,58,64,54,60)(65,67,69,71,73,75,77,79)(66,72,78,68,74,80,70,76)(81,83,85,87,89,91,93,95)(82,88,94,84,90,96,86,92)(97,103,109,99,105,111,101,107)(98,100,102,104,106,108,110,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,55,100,79,24,37,91),(2,56,101,80,25,38,92),(3,57,102,65,26,39,93),(4,58,103,66,27,40,94),(5,59,104,67,28,41,95),(6,60,105,68,29,42,96),(7,61,106,69,30,43,81),(8,62,107,70,31,44,82),(9,63,108,71,32,45,83),(10,64,109,72,17,46,84),(11,49,110,73,18,47,85),(12,50,111,74,19,48,86),(13,51,112,75,20,33,87),(14,52,97,76,21,34,88),(15,53,98,77,22,35,89),(16,54,99,78,23,36,90)], [(1,3,5,7,9,11,13,15),(2,8,14,4,10,16,6,12),(17,23,29,19,25,31,21,27),(18,20,22,24,26,28,30,32),(33,35,37,39,41,43,45,47),(34,40,46,36,42,48,38,44),(49,51,53,55,57,59,61,63),(50,56,62,52,58,64,54,60),(65,67,69,71,73,75,77,79),(66,72,78,68,74,80,70,76),(81,83,85,87,89,91,93,95),(82,88,94,84,90,96,86,92),(97,103,109,99,105,111,101,107),(98,100,102,104,106,108,110,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)]])

196 conjugacy classes

class 1 2A2B4A4B4C···4G7A···7F8A8B8C8D8E···8J14A···14F14G···14L16A···16H28A···28L28M···28AP56A···56X56Y···56BH112A···112AV
order122444···47···788888···814···1414···1416···1628···2828···2856···5656···56112···112
size112112···21···111112···21···12···24···41···12···21···12···24···4

196 irreducible representations

dim11111111111122222222
type++++-
imageC1C2C2C4C4C7C8C14C14C28C28C56D4Q8M4(2)C7×D4C7×Q8C8.C8C7×M4(2)C7×C8.C8
kernelC7×C8.C8C4×C56C7×M5(2)C4×C28C2×C56C8.C8C56C4×C8M5(2)C42C2×C8C8C56C56C2×C14C8C8C7C22C1
# reps11222686121212481126681248

Matrix representation of C7×C8.C8 in GL2(𝔽113) generated by

280
028
,
950
044
,
01
950
G:=sub<GL(2,GF(113))| [28,0,0,28],[95,0,0,44],[0,95,1,0] >;

C7×C8.C8 in GAP, Magma, Sage, TeX

C_7\times C_8.C_8
% in TeX

G:=Group("C7xC8.C8");
// GroupNames label

G:=SmallGroup(448,168);
// by ID

G=gap.SmallGroup(448,168);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,204,7059,248,102,124]);
// Polycyclic

G:=Group<a,b,c|a^7=b^8=1,c^8=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C7×C8.C8 in TeX

׿
×
𝔽