Extensions 1→N→G→Q→1 with N=C8.D14 and Q=C2

Direct product G=NxQ with N=C8.D14 and Q=C2
dρLabelID
C2xC8.D14224C2xC8.D14448,1200

Semidirect products G=N:Q with N=C8.D14 and Q=C2
extensionφ:Q→Out NdρLabelID
C8.D14:1C2 = SD16:D14φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:1C2448,1226
C8.D14:2C2 = D8:6D14φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:2C2448,1228
C8.D14:3C2 = D7xC8.C22φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:3C2448,1229
C8.D14:4C2 = D28.44D4φ: C2/C1C2 ⊆ Out C8.D142248-C8.D14:4C2448,1232
C8.D14:5C2 = D28.1D4φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:5C2448,280
C8.D14:6C2 = D28.2D4φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:6C2448,282
C8.D14:7C2 = D28.4D4φ: C2/C1C2 ⊆ Out C8.D141128-C8.D14:7C2448,286
C8.D14:8C2 = M4(2):D14φ: C2/C1C2 ⊆ Out C8.D141124C8.D14:8C2448,359
C8.D14:9C2 = D4.9D28φ: C2/C1C2 ⊆ Out C8.D141124-C8.D14:9C2448,360
C8.D14:10C2 = C8.24D28φ: C2/C1C2 ⊆ Out C8.D141124C8.D14:10C2448,432
C8.D14:11C2 = D4.11D28φ: C2/C1C2 ⊆ Out C8.D141124C8.D14:11C2448,1204
C8.D14:12C2 = D4.13D28φ: C2/C1C2 ⊆ Out C8.D142244-C8.D14:12C2448,1206
C8.D14:13C2 = C56.9C23φ: trivial image1124C8.D14:13C2448,1201

Non-split extensions G=N.Q with N=C8.D14 and Q=C2
extensionφ:Q→Out NdρLabelID
C8.D14.1C2 = D28.7D4φ: C2/C1C2 ⊆ Out C8.D142248-C8.D14.1C2448,289
C8.D14.2C2 = C8.20D28φ: C2/C1C2 ⊆ Out C8.D142244-C8.D14.2C2448,430

׿
x
:
Z
F
o
wr
Q
<