Copied to
clipboard

G = C8.24D28order 448 = 26·7

10th non-split extension by C8 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.24D28, C56.42D4, D28.22D4, Dic14.22D4, M4(2).11D14, C4.137(D4×D7), C8.C47D7, (C2×C8).72D14, C4.58(C2×D28), C28.138(C2×D4), C8⋊D14.2C2, C73(D4.3D4), D28.2C49C2, C8.D1410C2, C28.46D44C2, C4.12D284C2, C14.51(C4⋊D4), C2.24(C4⋊D28), (C2×C28).314C23, (C2×C56).155C22, C4○D28.41C22, (C2×D28).89C22, C22.8(Q82D7), (C7×M4(2)).8C22, C4.Dic7.39C22, (C2×Dic14).95C22, (C7×C8.C4)⋊8C2, (C2×C56⋊C2)⋊26C2, (C2×C14).5(C4○D4), (C2×C4).115(C22×D7), SmallGroup(448,432)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C8.24D28
C1C7C14C28C2×C28C4○D28D28.2C4 — C8.24D28
C7C14C2×C28 — C8.24D28
C1C2C2×C4C8.C4

Generators and relations for C8.24D28
 G = < a,b,c | a56=1, b4=c2=a28, bab-1=a43, cac-1=a27, cbc-1=b3 >

Subgroups: 668 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, D14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C56, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, D4.3D4, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C4.Dic7, C2×C56, C7×M4(2), C2×Dic14, C2×D28, C4○D28, C28.46D4, C4.12D28, C7×C8.C4, D28.2C4, C2×C56⋊C2, C8⋊D14, C8.D14, C8.24D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C22×D7, D4.3D4, C2×D28, D4×D7, Q82D7, C4⋊D28, C8.24D28

Smallest permutation representation of C8.24D28
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 109 15 95 29 81 43 67)(2 96 16 82 30 68 44 110)(3 83 17 69 31 111 45 97)(4 70 18 112 32 98 46 84)(5 57 19 99 33 85 47 71)(6 100 20 86 34 72 48 58)(7 87 21 73 35 59 49 101)(8 74 22 60 36 102 50 88)(9 61 23 103 37 89 51 75)(10 104 24 90 38 76 52 62)(11 91 25 77 39 63 53 105)(12 78 26 64 40 106 54 92)(13 65 27 107 41 93 55 79)(14 108 28 94 42 80 56 66)
(1 22 29 50)(2 49 30 21)(3 20 31 48)(4 47 32 19)(5 18 33 46)(6 45 34 17)(7 16 35 44)(8 43 36 15)(9 14 37 42)(10 41 38 13)(11 12 39 40)(23 56 51 28)(24 27 52 55)(25 54 53 26)(57 98 85 70)(58 69 86 97)(59 96 87 68)(60 67 88 95)(61 94 89 66)(62 65 90 93)(63 92 91 64)(71 84 99 112)(72 111 100 83)(73 82 101 110)(74 109 102 81)(75 80 103 108)(76 107 104 79)(77 78 105 106)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,15,95,29,81,43,67)(2,96,16,82,30,68,44,110)(3,83,17,69,31,111,45,97)(4,70,18,112,32,98,46,84)(5,57,19,99,33,85,47,71)(6,100,20,86,34,72,48,58)(7,87,21,73,35,59,49,101)(8,74,22,60,36,102,50,88)(9,61,23,103,37,89,51,75)(10,104,24,90,38,76,52,62)(11,91,25,77,39,63,53,105)(12,78,26,64,40,106,54,92)(13,65,27,107,41,93,55,79)(14,108,28,94,42,80,56,66), (1,22,29,50)(2,49,30,21)(3,20,31,48)(4,47,32,19)(5,18,33,46)(6,45,34,17)(7,16,35,44)(8,43,36,15)(9,14,37,42)(10,41,38,13)(11,12,39,40)(23,56,51,28)(24,27,52,55)(25,54,53,26)(57,98,85,70)(58,69,86,97)(59,96,87,68)(60,67,88,95)(61,94,89,66)(62,65,90,93)(63,92,91,64)(71,84,99,112)(72,111,100,83)(73,82,101,110)(74,109,102,81)(75,80,103,108)(76,107,104,79)(77,78,105,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,15,95,29,81,43,67)(2,96,16,82,30,68,44,110)(3,83,17,69,31,111,45,97)(4,70,18,112,32,98,46,84)(5,57,19,99,33,85,47,71)(6,100,20,86,34,72,48,58)(7,87,21,73,35,59,49,101)(8,74,22,60,36,102,50,88)(9,61,23,103,37,89,51,75)(10,104,24,90,38,76,52,62)(11,91,25,77,39,63,53,105)(12,78,26,64,40,106,54,92)(13,65,27,107,41,93,55,79)(14,108,28,94,42,80,56,66), (1,22,29,50)(2,49,30,21)(3,20,31,48)(4,47,32,19)(5,18,33,46)(6,45,34,17)(7,16,35,44)(8,43,36,15)(9,14,37,42)(10,41,38,13)(11,12,39,40)(23,56,51,28)(24,27,52,55)(25,54,53,26)(57,98,85,70)(58,69,86,97)(59,96,87,68)(60,67,88,95)(61,94,89,66)(62,65,90,93)(63,92,91,64)(71,84,99,112)(72,111,100,83)(73,82,101,110)(74,109,102,81)(75,80,103,108)(76,107,104,79)(77,78,105,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,109,15,95,29,81,43,67),(2,96,16,82,30,68,44,110),(3,83,17,69,31,111,45,97),(4,70,18,112,32,98,46,84),(5,57,19,99,33,85,47,71),(6,100,20,86,34,72,48,58),(7,87,21,73,35,59,49,101),(8,74,22,60,36,102,50,88),(9,61,23,103,37,89,51,75),(10,104,24,90,38,76,52,62),(11,91,25,77,39,63,53,105),(12,78,26,64,40,106,54,92),(13,65,27,107,41,93,55,79),(14,108,28,94,42,80,56,66)], [(1,22,29,50),(2,49,30,21),(3,20,31,48),(4,47,32,19),(5,18,33,46),(6,45,34,17),(7,16,35,44),(8,43,36,15),(9,14,37,42),(10,41,38,13),(11,12,39,40),(23,56,51,28),(24,27,52,55),(25,54,53,26),(57,98,85,70),(58,69,86,97),(59,96,87,68),(60,67,88,95),(61,94,89,66),(62,65,90,93),(63,92,91,64),(71,84,99,112),(72,111,100,83),(73,82,101,110),(74,109,102,81),(75,80,103,108),(76,107,104,79),(77,78,105,106)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A14B14C14D14E14F28A···28F28G28H28I56A···56L56M···56X
order122224444777888888814141414141428···2828282856···5656···56
size11228562228562222248828282224442···24444···48···8

58 irreducible representations

dim11111111222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D28D4.3D4D4×D7Q82D7C8.24D28
kernelC8.24D28C28.46D4C4.12D28C7×C8.C4D28.2C4C2×C56⋊C2C8⋊D14C8.D14C56Dic14D28C8.C4C2×C14C2×C8M4(2)C8C7C4C22C1
# reps1111111121132361223312

Matrix representation of C8.24D28 in GL4(𝔽113) generated by

1710500
953500
18910495
1111041811
,
001121
89111124
82811120
73731120
,
35800
1017800
112104189
19910295
G:=sub<GL(4,GF(113))| [17,95,18,111,105,35,9,104,0,0,104,18,0,0,95,11],[0,89,82,73,0,1,81,73,112,111,112,112,1,24,0,0],[35,101,112,19,8,78,104,9,0,0,18,102,0,0,9,95] >;

C8.24D28 in GAP, Magma, Sage, TeX

C_8._{24}D_{28}
% in TeX

G:=Group("C8.24D28");
// GroupNames label

G:=SmallGroup(448,432);
// by ID

G=gap.SmallGroup(448,432);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,254,555,58,1123,136,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=1,b^4=c^2=a^28,b*a*b^-1=a^43,c*a*c^-1=a^27,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽