metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8.24D28, C56.42D4, D28.22D4, Dic14.22D4, M4(2).11D14, C4.137(D4×D7), C8.C4⋊7D7, (C2×C8).72D14, C4.58(C2×D28), C28.138(C2×D4), C8⋊D14.2C2, C7⋊3(D4.3D4), D28.2C4⋊9C2, C8.D14⋊10C2, C28.46D4⋊4C2, C4.12D28⋊4C2, C14.51(C4⋊D4), C2.24(C4⋊D28), (C2×C28).314C23, (C2×C56).155C22, C4○D28.41C22, (C2×D28).89C22, C22.8(Q8⋊2D7), (C7×M4(2)).8C22, C4.Dic7.39C22, (C2×Dic14).95C22, (C7×C8.C4)⋊8C2, (C2×C56⋊C2)⋊26C2, (C2×C14).5(C4○D4), (C2×C4).115(C22×D7), SmallGroup(448,432)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8.24D28
G = < a,b,c | a56=1, b4=c2=a28, bab-1=a43, cac-1=a27, cbc-1=b3 >
Subgroups: 668 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, D14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C56, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, D4.3D4, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C4.Dic7, C2×C56, C7×M4(2), C2×Dic14, C2×D28, C4○D28, C28.46D4, C4.12D28, C7×C8.C4, D28.2C4, C2×C56⋊C2, C8⋊D14, C8.D14, C8.24D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C22×D7, D4.3D4, C2×D28, D4×D7, Q8⋊2D7, C4⋊D28, C8.24D28
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 109 15 95 29 81 43 67)(2 96 16 82 30 68 44 110)(3 83 17 69 31 111 45 97)(4 70 18 112 32 98 46 84)(5 57 19 99 33 85 47 71)(6 100 20 86 34 72 48 58)(7 87 21 73 35 59 49 101)(8 74 22 60 36 102 50 88)(9 61 23 103 37 89 51 75)(10 104 24 90 38 76 52 62)(11 91 25 77 39 63 53 105)(12 78 26 64 40 106 54 92)(13 65 27 107 41 93 55 79)(14 108 28 94 42 80 56 66)
(1 22 29 50)(2 49 30 21)(3 20 31 48)(4 47 32 19)(5 18 33 46)(6 45 34 17)(7 16 35 44)(8 43 36 15)(9 14 37 42)(10 41 38 13)(11 12 39 40)(23 56 51 28)(24 27 52 55)(25 54 53 26)(57 98 85 70)(58 69 86 97)(59 96 87 68)(60 67 88 95)(61 94 89 66)(62 65 90 93)(63 92 91 64)(71 84 99 112)(72 111 100 83)(73 82 101 110)(74 109 102 81)(75 80 103 108)(76 107 104 79)(77 78 105 106)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,15,95,29,81,43,67)(2,96,16,82,30,68,44,110)(3,83,17,69,31,111,45,97)(4,70,18,112,32,98,46,84)(5,57,19,99,33,85,47,71)(6,100,20,86,34,72,48,58)(7,87,21,73,35,59,49,101)(8,74,22,60,36,102,50,88)(9,61,23,103,37,89,51,75)(10,104,24,90,38,76,52,62)(11,91,25,77,39,63,53,105)(12,78,26,64,40,106,54,92)(13,65,27,107,41,93,55,79)(14,108,28,94,42,80,56,66), (1,22,29,50)(2,49,30,21)(3,20,31,48)(4,47,32,19)(5,18,33,46)(6,45,34,17)(7,16,35,44)(8,43,36,15)(9,14,37,42)(10,41,38,13)(11,12,39,40)(23,56,51,28)(24,27,52,55)(25,54,53,26)(57,98,85,70)(58,69,86,97)(59,96,87,68)(60,67,88,95)(61,94,89,66)(62,65,90,93)(63,92,91,64)(71,84,99,112)(72,111,100,83)(73,82,101,110)(74,109,102,81)(75,80,103,108)(76,107,104,79)(77,78,105,106)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,109,15,95,29,81,43,67)(2,96,16,82,30,68,44,110)(3,83,17,69,31,111,45,97)(4,70,18,112,32,98,46,84)(5,57,19,99,33,85,47,71)(6,100,20,86,34,72,48,58)(7,87,21,73,35,59,49,101)(8,74,22,60,36,102,50,88)(9,61,23,103,37,89,51,75)(10,104,24,90,38,76,52,62)(11,91,25,77,39,63,53,105)(12,78,26,64,40,106,54,92)(13,65,27,107,41,93,55,79)(14,108,28,94,42,80,56,66), (1,22,29,50)(2,49,30,21)(3,20,31,48)(4,47,32,19)(5,18,33,46)(6,45,34,17)(7,16,35,44)(8,43,36,15)(9,14,37,42)(10,41,38,13)(11,12,39,40)(23,56,51,28)(24,27,52,55)(25,54,53,26)(57,98,85,70)(58,69,86,97)(59,96,87,68)(60,67,88,95)(61,94,89,66)(62,65,90,93)(63,92,91,64)(71,84,99,112)(72,111,100,83)(73,82,101,110)(74,109,102,81)(75,80,103,108)(76,107,104,79)(77,78,105,106) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,109,15,95,29,81,43,67),(2,96,16,82,30,68,44,110),(3,83,17,69,31,111,45,97),(4,70,18,112,32,98,46,84),(5,57,19,99,33,85,47,71),(6,100,20,86,34,72,48,58),(7,87,21,73,35,59,49,101),(8,74,22,60,36,102,50,88),(9,61,23,103,37,89,51,75),(10,104,24,90,38,76,52,62),(11,91,25,77,39,63,53,105),(12,78,26,64,40,106,54,92),(13,65,27,107,41,93,55,79),(14,108,28,94,42,80,56,66)], [(1,22,29,50),(2,49,30,21),(3,20,31,48),(4,47,32,19),(5,18,33,46),(6,45,34,17),(7,16,35,44),(8,43,36,15),(9,14,37,42),(10,41,38,13),(11,12,39,40),(23,56,51,28),(24,27,52,55),(25,54,53,26),(57,98,85,70),(58,69,86,97),(59,96,87,68),(60,67,88,95),(61,94,89,66),(62,65,90,93),(63,92,91,64),(71,84,99,112),(72,111,100,83),(73,82,101,110),(74,109,102,81),(75,80,103,108),(76,107,104,79),(77,78,105,106)]])
58 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 14A | 14B | 14C | 14D | 14E | 14F | 28A | ··· | 28F | 28G | 28H | 28I | 56A | ··· | 56L | 56M | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 28 | ··· | 28 | 28 | 28 | 28 | 56 | ··· | 56 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 28 | 56 | 2 | 2 | 28 | 56 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 28 | 28 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
58 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | D28 | D4.3D4 | D4×D7 | Q8⋊2D7 | C8.24D28 |
kernel | C8.24D28 | C28.46D4 | C4.12D28 | C7×C8.C4 | D28.2C4 | C2×C56⋊C2 | C8⋊D14 | C8.D14 | C56 | Dic14 | D28 | C8.C4 | C2×C14 | C2×C8 | M4(2) | C8 | C7 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 3 | 6 | 12 | 2 | 3 | 3 | 12 |
Matrix representation of C8.24D28 ►in GL4(𝔽113) generated by
17 | 105 | 0 | 0 |
95 | 35 | 0 | 0 |
18 | 9 | 104 | 95 |
111 | 104 | 18 | 11 |
0 | 0 | 112 | 1 |
89 | 1 | 111 | 24 |
82 | 81 | 112 | 0 |
73 | 73 | 112 | 0 |
35 | 8 | 0 | 0 |
101 | 78 | 0 | 0 |
112 | 104 | 18 | 9 |
19 | 9 | 102 | 95 |
G:=sub<GL(4,GF(113))| [17,95,18,111,105,35,9,104,0,0,104,18,0,0,95,11],[0,89,82,73,0,1,81,73,112,111,112,112,1,24,0,0],[35,101,112,19,8,78,104,9,0,0,18,102,0,0,9,95] >;
C8.24D28 in GAP, Magma, Sage, TeX
C_8._{24}D_{28}
% in TeX
G:=Group("C8.24D28");
// GroupNames label
G:=SmallGroup(448,432);
// by ID
G=gap.SmallGroup(448,432);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,254,555,58,1123,136,438,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=1,b^4=c^2=a^28,b*a*b^-1=a^43,c*a*c^-1=a^27,c*b*c^-1=b^3>;
// generators/relations