Extensions 1→N→G→Q→1 with N=2+ 1+4 and Q=D7

Direct product G=N×Q with N=2+ 1+4 and Q=D7
dρLabelID
D7×2+ 1+4568+D7xES+(2,2)448,1379

Semidirect products G=N:Q with N=2+ 1+4 and Q=D7
extensionφ:Q→Out NdρLabelID
2+ 1+41D7 = 2+ 1+4⋊D7φ: D7/C7C2 ⊆ Out 2+ 1+4568+ES+(2,2):1D7448,775
2+ 1+42D7 = 2+ 1+42D7φ: D7/C7C2 ⊆ Out 2+ 1+4568+ES+(2,2):2D7448,778
2+ 1+43D7 = D28.32C23φ: D7/C7C2 ⊆ Out 2+ 1+41128+ES+(2,2):3D7448,1288
2+ 1+44D7 = D28.33C23φ: D7/C7C2 ⊆ Out 2+ 1+41128-ES+(2,2):4D7448,1289
2+ 1+45D7 = D14.C24φ: trivial image1128-ES+(2,2):5D7448,1380

Non-split extensions G=N.Q with N=2+ 1+4 and Q=D7
extensionφ:Q→Out NdρLabelID
2+ 1+4.1D7 = 2+ 1+4.D7φ: D7/C7C2 ⊆ Out 2+ 1+41128-ES+(2,2).1D7448,776
2+ 1+4.2D7 = 2+ 1+4.2D7φ: D7/C7C2 ⊆ Out 2+ 1+41128-ES+(2,2).2D7448,777

׿
×
𝔽