Extensions 1→N→G→Q→1 with N=C2×D4×D7 and Q=C2

Direct product G=N×Q with N=C2×D4×D7 and Q=C2
dρLabelID
C22×D4×D7112C2^2xD4xD7448,1369

Semidirect products G=N:Q with N=C2×D4×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4×D7)⋊1C2 = D4⋊D28φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):1C2448,307
(C2×D4×D7)⋊2C2 = D28⋊D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):2C2448,690
(C2×D4×D7)⋊3C2 = D4×D28φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):3C2448,1002
(C2×D4×D7)⋊4C2 = D45D28φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):4C2448,1007
(C2×D4×D7)⋊5C2 = D7×C22≀C2φ: C2/C1C2 ⊆ Out C2×D4×D756(C2xD4xD7):5C2448,1041
(C2×D4×D7)⋊6C2 = C242D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):6C2448,1042
(C2×D4×D7)⋊7C2 = C243D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):7C2448,1043
(C2×D4×D7)⋊8C2 = D7×C4⋊D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):8C2448,1057
(C2×D4×D7)⋊9C2 = C14.372+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):9C2448,1058
(C2×D4×D7)⋊10C2 = C14.382+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):10C2448,1060
(C2×D4×D7)⋊11C2 = D2819D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):11C2448,1062
(C2×D4×D7)⋊12C2 = C14.402+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):12C2448,1063
(C2×D4×D7)⋊13C2 = D2820D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):13C2448,1065
(C2×D4×D7)⋊14C2 = C14.1202+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):14C2448,1106
(C2×D4×D7)⋊15C2 = C14.1212+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):15C2448,1107
(C2×D4×D7)⋊16C2 = C4218D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):16C2448,1127
(C2×D4×D7)⋊17C2 = D2810D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):17C2448,1129
(C2×D4×D7)⋊18C2 = D7×C41D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):18C2448,1167
(C2×D4×D7)⋊19C2 = C4226D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):19C2448,1168
(C2×D4×D7)⋊20C2 = D2811D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):20C2448,1170
(C2×D4×D7)⋊21C2 = C2×D7×D8φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):21C2448,1207
(C2×D4×D7)⋊22C2 = C2×D8⋊D7φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):22C2448,1208
(C2×D4×D7)⋊23C2 = C2×D56⋊C2φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):23C2448,1212
(C2×D4×D7)⋊24C2 = D7×C8⋊C22φ: C2/C1C2 ⊆ Out C2×D4×D7568+(C2xD4xD7):24C2448,1225
(C2×D4×D7)⋊25C2 = D4×C7⋊D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):25C2448,1254
(C2×D4×D7)⋊26C2 = C14.1452+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):26C2448,1282
(C2×D4×D7)⋊27C2 = C2×D46D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):27C2448,1371
(C2×D4×D7)⋊28C2 = C2×D48D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7):28C2448,1376
(C2×D4×D7)⋊29C2 = D7×2+ 1+4φ: C2/C1C2 ⊆ Out C2×D4×D7568+(C2xD4xD7):29C2448,1379
(C2×D4×D7)⋊30C2 = C2×D7×C4○D4φ: trivial image112(C2xD4xD7):30C2448,1375

Non-split extensions G=N.Q with N=C2×D4×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4×D7).1C2 = D7×C23⋊C4φ: C2/C1C2 ⊆ Out C2×D4×D7568+(C2xD4xD7).1C2448,277
(C2×D4×D7).2C2 = D7×C4.D4φ: C2/C1C2 ⊆ Out C2×D4×D7568+(C2xD4xD7).2C2448,278
(C2×D4×D7).3C2 = D7×D4⋊C4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).3C2448,303
(C2×D4×D7).4C2 = (D4×D7)⋊C4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).4C2448,304
(C2×D4×D7).5C2 = D4.6D28φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).5C2448,310
(C2×D4×D7).6C2 = D146SD16φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).6C2448,703
(C2×D4×D7).7C2 = C4211D14φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).7C2448,998
(C2×D4×D7).8C2 = D7×C22.D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).8C2448,1105
(C2×D4×D7).9C2 = D7×C4.4D4φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).9C2448,1126
(C2×D4×D7).10C2 = C2×D7×SD16φ: C2/C1C2 ⊆ Out C2×D4×D7112(C2xD4xD7).10C2448,1211
(C2×D4×D7).11C2 = C4×D4×D7φ: trivial image112(C2xD4xD7).11C2448,997

׿
×
𝔽