extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4×D7)⋊1C2 = D4⋊D28 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):1C2 | 448,307 |
(C2×D4×D7)⋊2C2 = D28⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):2C2 | 448,690 |
(C2×D4×D7)⋊3C2 = D4×D28 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):3C2 | 448,1002 |
(C2×D4×D7)⋊4C2 = D4⋊5D28 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):4C2 | 448,1007 |
(C2×D4×D7)⋊5C2 = D7×C22≀C2 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 56 | | (C2xD4xD7):5C2 | 448,1041 |
(C2×D4×D7)⋊6C2 = C24⋊2D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):6C2 | 448,1042 |
(C2×D4×D7)⋊7C2 = C24⋊3D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):7C2 | 448,1043 |
(C2×D4×D7)⋊8C2 = D7×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):8C2 | 448,1057 |
(C2×D4×D7)⋊9C2 = C14.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):9C2 | 448,1058 |
(C2×D4×D7)⋊10C2 = C14.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):10C2 | 448,1060 |
(C2×D4×D7)⋊11C2 = D28⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):11C2 | 448,1062 |
(C2×D4×D7)⋊12C2 = C14.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):12C2 | 448,1063 |
(C2×D4×D7)⋊13C2 = D28⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):13C2 | 448,1065 |
(C2×D4×D7)⋊14C2 = C14.1202+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):14C2 | 448,1106 |
(C2×D4×D7)⋊15C2 = C14.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):15C2 | 448,1107 |
(C2×D4×D7)⋊16C2 = C42⋊18D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):16C2 | 448,1127 |
(C2×D4×D7)⋊17C2 = D28⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):17C2 | 448,1129 |
(C2×D4×D7)⋊18C2 = D7×C4⋊1D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):18C2 | 448,1167 |
(C2×D4×D7)⋊19C2 = C42⋊26D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):19C2 | 448,1168 |
(C2×D4×D7)⋊20C2 = D28⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):20C2 | 448,1170 |
(C2×D4×D7)⋊21C2 = C2×D7×D8 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):21C2 | 448,1207 |
(C2×D4×D7)⋊22C2 = C2×D8⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):22C2 | 448,1208 |
(C2×D4×D7)⋊23C2 = C2×D56⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):23C2 | 448,1212 |
(C2×D4×D7)⋊24C2 = D7×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 56 | 8+ | (C2xD4xD7):24C2 | 448,1225 |
(C2×D4×D7)⋊25C2 = D4×C7⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):25C2 | 448,1254 |
(C2×D4×D7)⋊26C2 = C14.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):26C2 | 448,1282 |
(C2×D4×D7)⋊27C2 = C2×D4⋊6D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):27C2 | 448,1371 |
(C2×D4×D7)⋊28C2 = C2×D4⋊8D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7):28C2 | 448,1376 |
(C2×D4×D7)⋊29C2 = D7×2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 56 | 8+ | (C2xD4xD7):29C2 | 448,1379 |
(C2×D4×D7)⋊30C2 = C2×D7×C4○D4 | φ: trivial image | 112 | | (C2xD4xD7):30C2 | 448,1375 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4×D7).1C2 = D7×C23⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 56 | 8+ | (C2xD4xD7).1C2 | 448,277 |
(C2×D4×D7).2C2 = D7×C4.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 56 | 8+ | (C2xD4xD7).2C2 | 448,278 |
(C2×D4×D7).3C2 = D7×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).3C2 | 448,303 |
(C2×D4×D7).4C2 = (D4×D7)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).4C2 | 448,304 |
(C2×D4×D7).5C2 = D4.6D28 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).5C2 | 448,310 |
(C2×D4×D7).6C2 = D14⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).6C2 | 448,703 |
(C2×D4×D7).7C2 = C42⋊11D14 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).7C2 | 448,998 |
(C2×D4×D7).8C2 = D7×C22.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).8C2 | 448,1105 |
(C2×D4×D7).9C2 = D7×C4.4D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).9C2 | 448,1126 |
(C2×D4×D7).10C2 = C2×D7×SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4×D7 | 112 | | (C2xD4xD7).10C2 | 448,1211 |
(C2×D4×D7).11C2 = C4×D4×D7 | φ: trivial image | 112 | | (C2xD4xD7).11C2 | 448,997 |