direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D4⋊8D14, D28⋊12C23, C28.47C24, C14.12C25, D14.6C24, C14⋊22+ 1+4, Dic7.7C24, Dic14⋊14C23, C4○D4⋊17D14, (C2×D4)⋊50D14, (C2×C28)⋊7C23, (C2×Q8)⋊39D14, (C4×D7)⋊2C23, D4⋊9(C22×D7), C7⋊D4⋊5C23, (C7×Q8)⋊9C23, Q8⋊8(C22×D7), (D4×D7)⋊12C22, (C7×D4)⋊10C23, (C22×C4)⋊33D14, (C2×C14).3C24, C2.13(D7×C24), C4.62(C23×D7), C7⋊2(C2×2+ 1+4), C4○D28⋊25C22, (C2×D28)⋊64C22, (C22×D28)⋊24C2, (D4×C14)⋊53C22, (Q8×C14)⋊46C22, (C22×D7)⋊5C23, (C22×C28)⋊28C22, Q8⋊2D7⋊13C22, (C23×D7)⋊18C22, C22.56(C23×D7), (C2×Dic14)⋊78C22, C23.214(C22×D7), (C22×C14).248C23, (C2×Dic7).299C23, (C2×D4×D7)⋊28C2, (C2×C4○D4)⋊13D7, (C2×C4×D7)⋊34C22, (C2×C4)⋊6(C22×D7), (C14×C4○D4)⋊14C2, (C2×C4○D28)⋊37C2, (C2×Q8⋊2D7)⋊21C2, (C7×C4○D4)⋊20C22, (C2×C7⋊D4)⋊54C22, SmallGroup(448,1376)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D4⋊8D14
G = < a,b,c,d,e | a2=b4=c2=d14=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b2c, ce=ec, ede=d-1 >
Subgroups: 4180 in 898 conjugacy classes, 447 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, D7, C14, C14, C14, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C22×D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×C14, C2×2+ 1+4, C2×Dic14, C2×C4×D7, C2×D28, C4○D28, D4×D7, Q8⋊2D7, C2×C7⋊D4, C22×C28, D4×C14, Q8×C14, C7×C4○D4, C23×D7, C22×D28, C2×C4○D28, C2×D4×D7, C2×Q8⋊2D7, D4⋊8D14, C14×C4○D4, C2×D4⋊8D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C25, C22×D7, C2×2+ 1+4, C23×D7, D4⋊8D14, D7×C24, C2×D4⋊8D14
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 15)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(22 42)(23 36)(24 37)(25 38)(26 39)(27 40)(28 41)(29 53)(30 54)(31 55)(32 56)(33 50)(34 51)(35 52)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 112)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)(92 105)(93 106)(94 107)(95 108)(96 109)(97 110)(98 111)
(1 23 11 32)(2 24 12 33)(3 25 13 34)(4 26 14 35)(5 27 8 29)(6 28 9 30)(7 22 10 31)(15 42 45 55)(16 36 46 56)(17 37 47 50)(18 38 48 51)(19 39 49 52)(20 40 43 53)(21 41 44 54)(57 85 64 92)(58 86 65 93)(59 87 66 94)(60 88 67 95)(61 89 68 96)(62 90 69 97)(63 91 70 98)(71 112 78 105)(72 99 79 106)(73 100 80 107)(74 101 81 108)(75 102 82 109)(76 103 83 110)(77 104 84 111)
(1 76)(2 84)(3 78)(4 72)(5 80)(6 74)(7 82)(8 73)(9 81)(10 75)(11 83)(12 77)(13 71)(14 79)(15 68)(16 62)(17 70)(18 64)(19 58)(20 66)(21 60)(22 102)(23 110)(24 104)(25 112)(26 106)(27 100)(28 108)(29 107)(30 101)(31 109)(32 103)(33 111)(34 105)(35 99)(36 97)(37 91)(38 85)(39 93)(40 87)(41 95)(42 89)(43 59)(44 67)(45 61)(46 69)(47 63)(48 57)(49 65)(50 98)(51 92)(52 86)(53 94)(54 88)(55 96)(56 90)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 13)(9 12)(10 11)(15 16)(17 21)(18 20)(22 32)(23 31)(24 30)(25 29)(26 35)(27 34)(28 33)(36 55)(37 54)(38 53)(39 52)(40 51)(41 50)(42 56)(43 48)(44 47)(45 46)(57 59)(60 70)(61 69)(62 68)(63 67)(64 66)(71 73)(74 84)(75 83)(76 82)(77 81)(78 80)(85 94)(86 93)(87 92)(88 91)(89 90)(95 98)(96 97)(99 106)(100 105)(101 104)(102 103)(107 112)(108 111)(109 110)
G:=sub<Sym(112)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,15)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(22,42)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,53)(30,54)(31,55)(32,56)(33,50)(34,51)(35,52)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,112)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111), (1,23,11,32)(2,24,12,33)(3,25,13,34)(4,26,14,35)(5,27,8,29)(6,28,9,30)(7,22,10,31)(15,42,45,55)(16,36,46,56)(17,37,47,50)(18,38,48,51)(19,39,49,52)(20,40,43,53)(21,41,44,54)(57,85,64,92)(58,86,65,93)(59,87,66,94)(60,88,67,95)(61,89,68,96)(62,90,69,97)(63,91,70,98)(71,112,78,105)(72,99,79,106)(73,100,80,107)(74,101,81,108)(75,102,82,109)(76,103,83,110)(77,104,84,111), (1,76)(2,84)(3,78)(4,72)(5,80)(6,74)(7,82)(8,73)(9,81)(10,75)(11,83)(12,77)(13,71)(14,79)(15,68)(16,62)(17,70)(18,64)(19,58)(20,66)(21,60)(22,102)(23,110)(24,104)(25,112)(26,106)(27,100)(28,108)(29,107)(30,101)(31,109)(32,103)(33,111)(34,105)(35,99)(36,97)(37,91)(38,85)(39,93)(40,87)(41,95)(42,89)(43,59)(44,67)(45,61)(46,69)(47,63)(48,57)(49,65)(50,98)(51,92)(52,86)(53,94)(54,88)(55,96)(56,90), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,13)(9,12)(10,11)(15,16)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,35)(27,34)(28,33)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,56)(43,48)(44,47)(45,46)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,73)(74,84)(75,83)(76,82)(77,81)(78,80)(85,94)(86,93)(87,92)(88,91)(89,90)(95,98)(96,97)(99,106)(100,105)(101,104)(102,103)(107,112)(108,111)(109,110)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,15)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(22,42)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,53)(30,54)(31,55)(32,56)(33,50)(34,51)(35,52)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,112)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111), (1,23,11,32)(2,24,12,33)(3,25,13,34)(4,26,14,35)(5,27,8,29)(6,28,9,30)(7,22,10,31)(15,42,45,55)(16,36,46,56)(17,37,47,50)(18,38,48,51)(19,39,49,52)(20,40,43,53)(21,41,44,54)(57,85,64,92)(58,86,65,93)(59,87,66,94)(60,88,67,95)(61,89,68,96)(62,90,69,97)(63,91,70,98)(71,112,78,105)(72,99,79,106)(73,100,80,107)(74,101,81,108)(75,102,82,109)(76,103,83,110)(77,104,84,111), (1,76)(2,84)(3,78)(4,72)(5,80)(6,74)(7,82)(8,73)(9,81)(10,75)(11,83)(12,77)(13,71)(14,79)(15,68)(16,62)(17,70)(18,64)(19,58)(20,66)(21,60)(22,102)(23,110)(24,104)(25,112)(26,106)(27,100)(28,108)(29,107)(30,101)(31,109)(32,103)(33,111)(34,105)(35,99)(36,97)(37,91)(38,85)(39,93)(40,87)(41,95)(42,89)(43,59)(44,67)(45,61)(46,69)(47,63)(48,57)(49,65)(50,98)(51,92)(52,86)(53,94)(54,88)(55,96)(56,90), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,13)(9,12)(10,11)(15,16)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,35)(27,34)(28,33)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,56)(43,48)(44,47)(45,46)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,73)(74,84)(75,83)(76,82)(77,81)(78,80)(85,94)(86,93)(87,92)(88,91)(89,90)(95,98)(96,97)(99,106)(100,105)(101,104)(102,103)(107,112)(108,111)(109,110) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,15),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(22,42),(23,36),(24,37),(25,38),(26,39),(27,40),(28,41),(29,53),(30,54),(31,55),(32,56),(33,50),(34,51),(35,52),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,112),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104),(92,105),(93,106),(94,107),(95,108),(96,109),(97,110),(98,111)], [(1,23,11,32),(2,24,12,33),(3,25,13,34),(4,26,14,35),(5,27,8,29),(6,28,9,30),(7,22,10,31),(15,42,45,55),(16,36,46,56),(17,37,47,50),(18,38,48,51),(19,39,49,52),(20,40,43,53),(21,41,44,54),(57,85,64,92),(58,86,65,93),(59,87,66,94),(60,88,67,95),(61,89,68,96),(62,90,69,97),(63,91,70,98),(71,112,78,105),(72,99,79,106),(73,100,80,107),(74,101,81,108),(75,102,82,109),(76,103,83,110),(77,104,84,111)], [(1,76),(2,84),(3,78),(4,72),(5,80),(6,74),(7,82),(8,73),(9,81),(10,75),(11,83),(12,77),(13,71),(14,79),(15,68),(16,62),(17,70),(18,64),(19,58),(20,66),(21,60),(22,102),(23,110),(24,104),(25,112),(26,106),(27,100),(28,108),(29,107),(30,101),(31,109),(32,103),(33,111),(34,105),(35,99),(36,97),(37,91),(38,85),(39,93),(40,87),(41,95),(42,89),(43,59),(44,67),(45,61),(46,69),(47,63),(48,57),(49,65),(50,98),(51,92),(52,86),(53,94),(54,88),(55,96),(56,90)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,13),(9,12),(10,11),(15,16),(17,21),(18,20),(22,32),(23,31),(24,30),(25,29),(26,35),(27,34),(28,33),(36,55),(37,54),(38,53),(39,52),(40,51),(41,50),(42,56),(43,48),(44,47),(45,46),(57,59),(60,70),(61,69),(62,68),(63,67),(64,66),(71,73),(74,84),(75,83),(76,82),(77,81),(78,80),(85,94),(86,93),(87,92),(88,91),(89,90),(95,98),(96,97),(99,106),(100,105),(101,104),(102,103),(107,112),(108,111),(109,110)]])
94 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2U | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 7A | 7B | 7C | 14A | ··· | 14I | 14J | ··· | 14AA | 28A | ··· | 28L | 28M | ··· | 28AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 14 | ··· | 14 | 2 | ··· | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
94 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D7 | D14 | D14 | D14 | D14 | 2+ 1+4 | D4⋊8D14 |
kernel | C2×D4⋊8D14 | C22×D28 | C2×C4○D28 | C2×D4×D7 | C2×Q8⋊2D7 | D4⋊8D14 | C14×C4○D4 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | C14 | C2 |
# reps | 1 | 3 | 3 | 6 | 2 | 16 | 1 | 3 | 9 | 9 | 3 | 24 | 2 | 12 |
Matrix representation of C2×D4⋊8D14 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 11 | 0 | 0 |
0 | 0 | 18 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 18 |
0 | 0 | 0 | 0 | 11 | 27 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 11 |
0 | 0 | 0 | 0 | 18 | 2 |
0 | 0 | 2 | 18 | 0 | 0 |
0 | 0 | 11 | 27 | 0 | 0 |
1 | 25 | 0 | 0 | 0 | 0 |
24 | 21 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 8 | 0 | 0 |
0 | 0 | 21 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 21 |
0 | 0 | 0 | 0 | 8 | 8 |
26 | 1 | 0 | 0 | 0 | 0 |
21 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 8 | 0 | 0 |
0 | 0 | 28 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 21 |
0 | 0 | 0 | 0 | 1 | 26 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,18,0,0,0,0,11,2,0,0,0,0,0,0,2,11,0,0,0,0,18,27],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,2,11,0,0,0,0,18,27,0,0,27,18,0,0,0,0,11,2,0,0],[1,24,0,0,0,0,25,21,0,0,0,0,0,0,26,21,0,0,0,0,8,21,0,0,0,0,0,0,3,8,0,0,0,0,21,8],[26,21,0,0,0,0,1,3,0,0,0,0,0,0,26,28,0,0,0,0,8,3,0,0,0,0,0,0,3,1,0,0,0,0,21,26] >;
C2×D4⋊8D14 in GAP, Magma, Sage, TeX
C_2\times D_4\rtimes_8D_{14}
% in TeX
G:=Group("C2xD4:8D14");
// GroupNames label
G:=SmallGroup(448,1376);
// by ID
G=gap.SmallGroup(448,1376);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,297,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^14=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^2*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations