Extensions 1→N→G→Q→1 with N=D14 and Q=M4(2)

Direct product G=NxQ with N=D14 and Q=M4(2)
dρLabelID
C2xD7xM4(2)112C2xD7xM4(2)448,1196

Semidirect products G=N:Q with N=D14 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D14:1M4(2) = C8:9D28φ: M4(2)/C8C2 ⊆ Out D14224D14:1M4(2)448,240
D14:2M4(2) = D14:2M4(2)φ: M4(2)/C8C2 ⊆ Out D14224D14:2M4(2)448,262
D14:3M4(2) = D14:3M4(2)φ: M4(2)/C8C2 ⊆ Out D14224D14:3M4(2)448,370
D14:4M4(2) = C56:D4φ: M4(2)/C8C2 ⊆ Out D14224D14:4M4(2)448,661
D14:5M4(2) = D14:M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D14112D14:5M4(2)448,260
D14:6M4(2) = D14:6M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D14112D14:6M4(2)448,660

Non-split extensions G=N.Q with N=D14 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D14.1M4(2) = C42.182D14φ: M4(2)/C2xC4C2 ⊆ Out D14224D14.1M4(2)448,239
D14.2M4(2) = C42.202D14φ: M4(2)/C2xC4C2 ⊆ Out D14224D14.2M4(2)448,369
D14.3M4(2) = D7xC8:C4φ: trivial image224D14.3M4(2)448,238
D14.4M4(2) = D7xC22:C8φ: trivial image112D14.4M4(2)448,258
D14.5M4(2) = D7xC4:C8φ: trivial image224D14.5M4(2)448,366

׿
x
:
Z
F
o
wr
Q
<