Copied to
clipboard

G = D146M4(2)  order 448 = 26·7

2nd semidirect product of D14 and M4(2) acting via M4(2)/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D146M4(2), (C2×C8)⋊20D14, D14⋊C837C2, C4.88(C2×D28), (C2×C56)⋊35C22, (C2×C28).170D4, C28.306(C2×D4), (C2×C4).151D28, (C2×M4(2))⋊6D7, (C23×D7).7C4, C23.54(C4×D7), C4.38(D14⋊C4), C72(C24.4C4), C2.20(D7×M4(2)), C28.25(C22⋊C4), (C14×M4(2))⋊16C2, (C2×C28).866C23, (C22×C4).349D14, C14.31(C2×M4(2)), C22.27(D14⋊C4), (C22×Dic7).16C4, (C22×C28).185C22, (C2×C4×D7).9C4, (C2×C7⋊C8)⋊28C22, (D7×C22×C4).2C2, C2.27(C2×D14⋊C4), (C2×C4).159(C4×D7), C4.132(C2×C7⋊D4), C22.145(C2×C4×D7), (C2×C28).105(C2×C4), C14.55(C2×C22⋊C4), (C2×C4.Dic7)⋊14C2, (C2×C4×D7).284C22, (C2×C4).195(C7⋊D4), (C22×C14).66(C2×C4), (C22×D7).63(C2×C4), (C2×C4).808(C22×D7), (C2×C14).19(C22⋊C4), (C2×C14).136(C22×C4), (C2×Dic7).102(C2×C4), SmallGroup(448,660)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D146M4(2)
C1C7C14C28C2×C28C2×C4×D7D7×C22×C4 — D146M4(2)
C7C2×C14 — D146M4(2)
C1C2×C4C2×M4(2)

Generators and relations for D146M4(2)
 G = < a,b,c,d | a14=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=a7b, bd=db, dcd=c5 >

Subgroups: 932 in 190 conjugacy classes, 67 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, C23, C23, D7, C14, C14, C14, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C22⋊C8, C2×M4(2), C2×M4(2), C23×C4, C7⋊C8, C56, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C24.4C4, C2×C7⋊C8, C4.Dic7, C2×C56, C7×M4(2), C2×C4×D7, C2×C4×D7, C22×Dic7, C22×C28, C23×D7, D14⋊C8, C2×C4.Dic7, C14×M4(2), D7×C22×C4, D146M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, M4(2), C22×C4, C2×D4, D14, C2×C22⋊C4, C2×M4(2), C4×D7, D28, C7⋊D4, C22×D7, C24.4C4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, D7×M4(2), C2×D14⋊C4, D146M4(2)

Smallest permutation representation of D146M4(2)
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 25)(16 24)(17 23)(18 22)(19 21)(26 28)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 80)(72 79)(73 78)(74 77)(75 76)(81 84)(82 83)(85 87)(88 98)(89 97)(90 96)(91 95)(92 94)(99 100)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)
(1 107 17 64 90 76 53 36)(2 108 18 65 91 77 54 37)(3 109 19 66 92 78 55 38)(4 110 20 67 93 79 56 39)(5 111 21 68 94 80 43 40)(6 112 22 69 95 81 44 41)(7 99 23 70 96 82 45 42)(8 100 24 57 97 83 46 29)(9 101 25 58 98 84 47 30)(10 102 26 59 85 71 48 31)(11 103 27 60 86 72 49 32)(12 104 28 61 87 73 50 33)(13 105 15 62 88 74 51 34)(14 106 16 63 89 75 52 35)
(1 97)(2 98)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 93)(12 94)(13 95)(14 96)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 43)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,25)(16,24)(17,23)(18,22)(19,21)(26,28)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,80)(72,79)(73,78)(74,77)(75,76)(81,84)(82,83)(85,87)(88,98)(89,97)(90,96)(91,95)(92,94)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107), (1,107,17,64,90,76,53,36)(2,108,18,65,91,77,54,37)(3,109,19,66,92,78,55,38)(4,110,20,67,93,79,56,39)(5,111,21,68,94,80,43,40)(6,112,22,69,95,81,44,41)(7,99,23,70,96,82,45,42)(8,100,24,57,97,83,46,29)(9,101,25,58,98,84,47,30)(10,102,26,59,85,71,48,31)(11,103,27,60,86,72,49,32)(12,104,28,61,87,73,50,33)(13,105,15,62,88,74,51,34)(14,106,16,63,89,75,52,35), (1,97)(2,98)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,43)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,25)(16,24)(17,23)(18,22)(19,21)(26,28)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,80)(72,79)(73,78)(74,77)(75,76)(81,84)(82,83)(85,87)(88,98)(89,97)(90,96)(91,95)(92,94)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107), (1,107,17,64,90,76,53,36)(2,108,18,65,91,77,54,37)(3,109,19,66,92,78,55,38)(4,110,20,67,93,79,56,39)(5,111,21,68,94,80,43,40)(6,112,22,69,95,81,44,41)(7,99,23,70,96,82,45,42)(8,100,24,57,97,83,46,29)(9,101,25,58,98,84,47,30)(10,102,26,59,85,71,48,31)(11,103,27,60,86,72,49,32)(12,104,28,61,87,73,50,33)(13,105,15,62,88,74,51,34)(14,106,16,63,89,75,52,35), (1,97)(2,98)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,43)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,25),(16,24),(17,23),(18,22),(19,21),(26,28),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,80),(72,79),(73,78),(74,77),(75,76),(81,84),(82,83),(85,87),(88,98),(89,97),(90,96),(91,95),(92,94),(99,100),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107)], [(1,107,17,64,90,76,53,36),(2,108,18,65,91,77,54,37),(3,109,19,66,92,78,55,38),(4,110,20,67,93,79,56,39),(5,111,21,68,94,80,43,40),(6,112,22,69,95,81,44,41),(7,99,23,70,96,82,45,42),(8,100,24,57,97,83,46,29),(9,101,25,58,98,84,47,30),(10,102,26,59,85,71,48,31),(11,103,27,60,86,72,49,32),(12,104,28,61,87,73,50,33),(13,105,15,62,88,74,51,34),(14,106,16,63,89,75,52,35)], [(1,97),(2,98),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,93),(12,94),(13,95),(14,96),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,43),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)]])

88 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28L28M···28R56A···56X
order122222222244444444447778888888814···1414···1428···2828···2856···56
size11112214141414111122141414142224444282828282···24···42···24···44···4

88 irreducible representations

dim111111112222222224
type++++++++++
imageC1C2C2C2C2C4C4C4D4D7M4(2)D14D14C4×D7D28C7⋊D4C4×D7D7×M4(2)
kernelD146M4(2)D14⋊C8C2×C4.Dic7C14×M4(2)D7×C22×C4C2×C4×D7C22×Dic7C23×D7C2×C28C2×M4(2)D14C2×C8C22×C4C2×C4C2×C4C2×C4C23C2
# reps141114224386361212612

Matrix representation of D146M4(2) in GL4(𝔽113) generated by

1000
0100
00180
005988
,
1000
0100
0025112
005988
,
011200
98000
0010475
00209
,
112000
0100
001120
000112
G:=sub<GL(4,GF(113))| [1,0,0,0,0,1,0,0,0,0,1,59,0,0,80,88],[1,0,0,0,0,1,0,0,0,0,25,59,0,0,112,88],[0,98,0,0,112,0,0,0,0,0,104,20,0,0,75,9],[112,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112] >;

D146M4(2) in GAP, Magma, Sage, TeX

D_{14}\rtimes_6M_4(2)
% in TeX

G:=Group("D14:6M4(2)");
// GroupNames label

G:=SmallGroup(448,660);
// by ID

G=gap.SmallGroup(448,660);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,422,387,58,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽