Extensions 1→N→G→Q→1 with N=C7×2+ 1+4 and Q=C2

Direct product G=N×Q with N=C7×2+ 1+4 and Q=C2
dρLabelID
C14×2+ 1+4112C14xES+(2,2)448,1389

Semidirect products G=N:Q with N=C7×2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×2+ 1+4)⋊1C2 = 2+ 1+4⋊D7φ: C2/C1C2 ⊆ Out C7×2+ 1+4568+(C7xES+(2,2)):1C2448,775
(C7×2+ 1+4)⋊2C2 = D28.32C23φ: C2/C1C2 ⊆ Out C7×2+ 1+41128+(C7xES+(2,2)):2C2448,1288
(C7×2+ 1+4)⋊3C2 = D28.33C23φ: C2/C1C2 ⊆ Out C7×2+ 1+41128-(C7xES+(2,2)):3C2448,1289
(C7×2+ 1+4)⋊4C2 = D7×2+ 1+4φ: C2/C1C2 ⊆ Out C7×2+ 1+4568+(C7xES+(2,2)):4C2448,1379
(C7×2+ 1+4)⋊5C2 = D14.C24φ: C2/C1C2 ⊆ Out C7×2+ 1+41128-(C7xES+(2,2)):5C2448,1380
(C7×2+ 1+4)⋊6C2 = 2+ 1+42D7φ: C2/C1C2 ⊆ Out C7×2+ 1+4568+(C7xES+(2,2)):6C2448,778
(C7×2+ 1+4)⋊7C2 = C7×D44D4φ: C2/C1C2 ⊆ Out C7×2+ 1+4564(C7xES+(2,2)):7C2448,861
(C7×2+ 1+4)⋊8C2 = C7×C2≀C22φ: C2/C1C2 ⊆ Out C7×2+ 1+4564(C7xES+(2,2)):8C2448,865
(C7×2+ 1+4)⋊9C2 = C7×D4○D8φ: C2/C1C2 ⊆ Out C7×2+ 1+41124(C7xES+(2,2)):9C2448,1359
(C7×2+ 1+4)⋊10C2 = C7×D4○SD16φ: C2/C1C2 ⊆ Out C7×2+ 1+41124(C7xES+(2,2)):10C2448,1360
(C7×2+ 1+4)⋊11C2 = C7×C2.C25φ: trivial image1124(C7xES+(2,2)):11C2448,1391

Non-split extensions G=N.Q with N=C7×2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×2+ 1+4).1C2 = 2+ 1+4.D7φ: C2/C1C2 ⊆ Out C7×2+ 1+41128-(C7xES+(2,2)).1C2448,776
(C7×2+ 1+4).2C2 = 2+ 1+4.2D7φ: C2/C1C2 ⊆ Out C7×2+ 1+41128-(C7xES+(2,2)).2C2448,777
(C7×2+ 1+4).3C2 = C7×D4.9D4φ: C2/C1C2 ⊆ Out C7×2+ 1+41124(C7xES+(2,2)).3C2448,863
(C7×2+ 1+4).4C2 = C7×C23.7D4φ: C2/C1C2 ⊆ Out C7×2+ 1+41124(C7xES+(2,2)).4C2448,866

׿
×
𝔽