Copied to
clipboard

G = C7xD4oD8order 448 = 26·7

Direct product of C7 and D4oD8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7xD4oD8, C56.52C23, C28.85C24, 2+ 1+4:3C14, C8oD4:3C14, C4oD8:4C14, D8:7(C2xC14), (C2xD8):12C14, (C14xD8):26C2, C8:C22:4C14, Q16:7(C2xC14), (C7xD4).45D4, D4.11(C7xD4), C4.45(D4xC14), (C7xQ8).45D4, Q8.11(C7xD4), (C2xC56):31C22, SD16:4(C2xC14), C28.406(C2xD4), (C7xD8):21C22, C4.8(C23xC14), C22.7(D4xC14), (D4xC14):40C22, M4(2):6(C2xC14), C8.10(C22xC14), (C7xQ16):21C22, D4.5(C22xC14), (C7xD4).38C23, Q8.5(C22xC14), (C7xQ8).39C23, (C2xC28).687C23, (C7xSD16):20C22, C14.206(C22xD4), (C7x2+ 1+4):9C2, (C7xM4(2)):32C22, (C2xC8):4(C2xC14), C2.30(D4xC2xC14), C4oD4:1(C2xC14), (C7xC8oD4):12C2, (C7xC4oD8):11C2, (C2xD4):7(C2xC14), (C7xC8:C22):11C2, (C2xC14).184(C2xD4), (C7xC4oD4):14C22, (C2xC4).48(C22xC14), SmallGroup(448,1359)

Series: Derived Chief Lower central Upper central

C1C4 — C7xD4oD8
C1C2C4C28C7xD4C7xD8C14xD8 — C7xD4oD8
C1C2C4 — C7xD4oD8
C1C14C7xC4oD4 — C7xD4oD8

Generators and relations for C7xD4oD8
 G = < a,b,c,d,e | a7=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d3 >

Subgroups: 474 in 268 conjugacy classes, 158 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C14, C14, C2xC8, M4(2), D8, SD16, Q16, C2xD4, C2xD4, C4oD4, C4oD4, C4oD4, C28, C28, C28, C2xC14, C2xC14, C8oD4, C2xD8, C4oD8, C8:C22, 2+ 1+4, C56, C56, C2xC28, C2xC28, C7xD4, C7xD4, C7xQ8, C7xQ8, C22xC14, D4oD8, C2xC56, C7xM4(2), C7xD8, C7xSD16, C7xQ16, D4xC14, D4xC14, C7xC4oD4, C7xC4oD4, C7xC4oD4, C7xC8oD4, C14xD8, C7xC4oD8, C7xC8:C22, C7x2+ 1+4, C7xD4oD8
Quotients: C1, C2, C22, C7, D4, C23, C14, C2xD4, C24, C2xC14, C22xD4, C7xD4, C22xC14, D4oD8, D4xC14, C23xC14, D4xC2xC14, C7xD4oD8

Smallest permutation representation of C7xD4oD8
On 112 points
Generators in S112
(1 82 99 109 36 31 61)(2 83 100 110 37 32 62)(3 84 101 111 38 25 63)(4 85 102 112 39 26 64)(5 86 103 105 40 27 57)(6 87 104 106 33 28 58)(7 88 97 107 34 29 59)(8 81 98 108 35 30 60)(9 46 76 17 54 95 68)(10 47 77 18 55 96 69)(11 48 78 19 56 89 70)(12 41 79 20 49 90 71)(13 42 80 21 50 91 72)(14 43 73 22 51 92 65)(15 44 74 23 52 93 66)(16 45 75 24 53 94 67)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 59 61 63)(58 60 62 64)(65 71 69 67)(66 72 70 68)(73 79 77 75)(74 80 78 76)(81 83 85 87)(82 84 86 88)(89 95 93 91)(90 96 94 92)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)
(1 46)(2 47)(3 48)(4 41)(5 42)(6 43)(7 44)(8 45)(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 97)(24 98)(25 70)(26 71)(27 72)(28 65)(29 66)(30 67)(31 68)(32 69)(33 92)(34 93)(35 94)(36 95)(37 96)(38 89)(39 90)(40 91)(49 112)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(73 87)(74 88)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 44)(2 43)(3 42)(4 41)(5 48)(6 47)(7 46)(8 45)(9 59)(10 58)(11 57)(12 64)(13 63)(14 62)(15 61)(16 60)(17 97)(18 104)(19 103)(20 102)(21 101)(22 100)(23 99)(24 98)(25 72)(26 71)(27 70)(28 69)(29 68)(30 67)(31 66)(32 65)(33 96)(34 95)(35 94)(36 93)(37 92)(38 91)(39 90)(40 89)(49 112)(50 111)(51 110)(52 109)(53 108)(54 107)(55 106)(56 105)(73 83)(74 82)(75 81)(76 88)(77 87)(78 86)(79 85)(80 84)

G:=sub<Sym(112)| (1,82,99,109,36,31,61)(2,83,100,110,37,32,62)(3,84,101,111,38,25,63)(4,85,102,112,39,26,64)(5,86,103,105,40,27,57)(6,87,104,106,33,28,58)(7,88,97,107,34,29,59)(8,81,98,108,35,30,60)(9,46,76,17,54,95,68)(10,47,77,18,55,96,69)(11,48,78,19,56,89,70)(12,41,79,20,49,90,71)(13,42,80,21,50,91,72)(14,43,73,22,51,92,65)(15,44,74,23,52,93,66)(16,45,75,24,53,94,67), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,71,69,67)(66,72,70,68)(73,79,77,75)(74,80,78,76)(81,83,85,87)(82,84,86,88)(89,95,93,91)(90,96,94,92)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112), (1,46)(2,47)(3,48)(4,41)(5,42)(6,43)(7,44)(8,45)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,70)(26,71)(27,72)(28,65)(29,66)(30,67)(31,68)(32,69)(33,92)(34,93)(35,94)(36,95)(37,96)(38,89)(39,90)(40,91)(49,112)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(73,87)(74,88)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,44)(2,43)(3,42)(4,41)(5,48)(6,47)(7,46)(8,45)(9,59)(10,58)(11,57)(12,64)(13,63)(14,62)(15,61)(16,60)(17,97)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(49,112)(50,111)(51,110)(52,109)(53,108)(54,107)(55,106)(56,105)(73,83)(74,82)(75,81)(76,88)(77,87)(78,86)(79,85)(80,84)>;

G:=Group( (1,82,99,109,36,31,61)(2,83,100,110,37,32,62)(3,84,101,111,38,25,63)(4,85,102,112,39,26,64)(5,86,103,105,40,27,57)(6,87,104,106,33,28,58)(7,88,97,107,34,29,59)(8,81,98,108,35,30,60)(9,46,76,17,54,95,68)(10,47,77,18,55,96,69)(11,48,78,19,56,89,70)(12,41,79,20,49,90,71)(13,42,80,21,50,91,72)(14,43,73,22,51,92,65)(15,44,74,23,52,93,66)(16,45,75,24,53,94,67), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,71,69,67)(66,72,70,68)(73,79,77,75)(74,80,78,76)(81,83,85,87)(82,84,86,88)(89,95,93,91)(90,96,94,92)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112), (1,46)(2,47)(3,48)(4,41)(5,42)(6,43)(7,44)(8,45)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,70)(26,71)(27,72)(28,65)(29,66)(30,67)(31,68)(32,69)(33,92)(34,93)(35,94)(36,95)(37,96)(38,89)(39,90)(40,91)(49,112)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(73,87)(74,88)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,44)(2,43)(3,42)(4,41)(5,48)(6,47)(7,46)(8,45)(9,59)(10,58)(11,57)(12,64)(13,63)(14,62)(15,61)(16,60)(17,97)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(49,112)(50,111)(51,110)(52,109)(53,108)(54,107)(55,106)(56,105)(73,83)(74,82)(75,81)(76,88)(77,87)(78,86)(79,85)(80,84) );

G=PermutationGroup([[(1,82,99,109,36,31,61),(2,83,100,110,37,32,62),(3,84,101,111,38,25,63),(4,85,102,112,39,26,64),(5,86,103,105,40,27,57),(6,87,104,106,33,28,58),(7,88,97,107,34,29,59),(8,81,98,108,35,30,60),(9,46,76,17,54,95,68),(10,47,77,18,55,96,69),(11,48,78,19,56,89,70),(12,41,79,20,49,90,71),(13,42,80,21,50,91,72),(14,43,73,22,51,92,65),(15,44,74,23,52,93,66),(16,45,75,24,53,94,67)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,59,61,63),(58,60,62,64),(65,71,69,67),(66,72,70,68),(73,79,77,75),(74,80,78,76),(81,83,85,87),(82,84,86,88),(89,95,93,91),(90,96,94,92),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112)], [(1,46),(2,47),(3,48),(4,41),(5,42),(6,43),(7,44),(8,45),(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,97),(24,98),(25,70),(26,71),(27,72),(28,65),(29,66),(30,67),(31,68),(32,69),(33,92),(34,93),(35,94),(36,95),(37,96),(38,89),(39,90),(40,91),(49,112),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(73,87),(74,88),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,44),(2,43),(3,42),(4,41),(5,48),(6,47),(7,46),(8,45),(9,59),(10,58),(11,57),(12,64),(13,63),(14,62),(15,61),(16,60),(17,97),(18,104),(19,103),(20,102),(21,101),(22,100),(23,99),(24,98),(25,72),(26,71),(27,70),(28,69),(29,68),(30,67),(31,66),(32,65),(33,96),(34,95),(35,94),(36,93),(37,92),(38,91),(39,90),(40,89),(49,112),(50,111),(51,110),(52,109),(53,108),(54,107),(55,106),(56,105),(73,83),(74,82),(75,81),(76,88),(77,87),(78,86),(79,85),(80,84)]])

154 conjugacy classes

class 1 2A2B2C2D2E···2J4A4B4C4D4E4F7A···7F8A8B8C8D8E14A···14F14G···14X14Y···14BH28A···28X28Y···28AJ56A···56L56M···56AD
order122222···24444447···78888814···1414···1414···1428···2828···2856···5656···56
size112224···42222441···1224441···12···24···42···24···42···24···4

154 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4C7xD4C7xD4D4oD8C7xD4oD8
kernelC7xD4oD8C7xC8oD4C14xD8C7xC4oD8C7xC8:C22C7x2+ 1+4D4oD8C8oD4C2xD8C4oD8C8:C222+ 1+4C7xD4C7xQ8D4Q8C7C1
# reps113362661818361231186212

Matrix representation of C7xD4oD8 in GL4(F113) generated by

16000
01600
00160
00016
,
011200
1000
0001
001120
,
0001
001120
011200
1000
,
823100
828200
008231
008282
,
0010
000112
1000
011200
G:=sub<GL(4,GF(113))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,1,0,0,112,0,0,0,0,0,0,112,0,0,1,0],[0,0,0,1,0,0,112,0,0,112,0,0,1,0,0,0],[82,82,0,0,31,82,0,0,0,0,82,82,0,0,31,82],[0,0,1,0,0,0,0,112,1,0,0,0,0,112,0,0] >;

C7xD4oD8 in GAP, Magma, Sage, TeX

C_7\times D_4\circ D_8
% in TeX

G:=Group("C7xD4oD8");
// GroupNames label

G:=SmallGroup(448,1359);
// by ID

G=gap.SmallGroup(448,1359);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,1641,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<