Copied to
clipboard

G = A4×C38order 456 = 23·3·19

Direct product of C38 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C38, C23⋊C57, C22⋊C114, (C2×C38)⋊6C6, (C22×C38)⋊1C3, SmallGroup(456,49)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C38
C1C22C2×C38A4×C19 — A4×C38
C22 — A4×C38
C1C38

Generators and relations for A4×C38
 G = < a,b,c,d | a38=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
3C2
4C3
3C22
3C22
4C6
3C38
3C38
4C57
3C2×C38
3C2×C38
4C114

Smallest permutation representation of A4×C38
On 114 points
Generators in S114
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(77 96)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)(85 104)(86 105)(87 106)(88 107)(89 108)(90 109)(91 110)(92 111)(93 112)(94 113)(95 114)
(1 97 63)(2 98 64)(3 99 65)(4 100 66)(5 101 67)(6 102 68)(7 103 69)(8 104 70)(9 105 71)(10 106 72)(11 107 73)(12 108 74)(13 109 75)(14 110 76)(15 111 39)(16 112 40)(17 113 41)(18 114 42)(19 77 43)(20 78 44)(21 79 45)(22 80 46)(23 81 47)(24 82 48)(25 83 49)(26 84 50)(27 85 51)(28 86 52)(29 87 53)(30 88 54)(31 89 55)(32 90 56)(33 91 57)(34 92 58)(35 93 59)(36 94 60)(37 95 61)(38 96 62)

G:=sub<Sym(114)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114), (1,97,63)(2,98,64)(3,99,65)(4,100,66)(5,101,67)(6,102,68)(7,103,69)(8,104,70)(9,105,71)(10,106,72)(11,107,73)(12,108,74)(13,109,75)(14,110,76)(15,111,39)(16,112,40)(17,113,41)(18,114,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(25,83,49)(26,84,50)(27,85,51)(28,86,52)(29,87,53)(30,88,54)(31,89,55)(32,90,56)(33,91,57)(34,92,58)(35,93,59)(36,94,60)(37,95,61)(38,96,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114), (1,97,63)(2,98,64)(3,99,65)(4,100,66)(5,101,67)(6,102,68)(7,103,69)(8,104,70)(9,105,71)(10,106,72)(11,107,73)(12,108,74)(13,109,75)(14,110,76)(15,111,39)(16,112,40)(17,113,41)(18,114,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(25,83,49)(26,84,50)(27,85,51)(28,86,52)(29,87,53)(30,88,54)(31,89,55)(32,90,56)(33,91,57)(34,92,58)(35,93,59)(36,94,60)(37,95,61)(38,96,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(77,96),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103),(85,104),(86,105),(87,106),(88,107),(89,108),(90,109),(91,110),(92,111),(93,112),(94,113),(95,114)], [(1,97,63),(2,98,64),(3,99,65),(4,100,66),(5,101,67),(6,102,68),(7,103,69),(8,104,70),(9,105,71),(10,106,72),(11,107,73),(12,108,74),(13,109,75),(14,110,76),(15,111,39),(16,112,40),(17,113,41),(18,114,42),(19,77,43),(20,78,44),(21,79,45),(22,80,46),(23,81,47),(24,82,48),(25,83,49),(26,84,50),(27,85,51),(28,86,52),(29,87,53),(30,88,54),(31,89,55),(32,90,56),(33,91,57),(34,92,58),(35,93,59),(36,94,60),(37,95,61),(38,96,62)]])

152 conjugacy classes

class 1 2A2B2C3A3B6A6B19A···19R38A···38R38S···38BB57A···57AJ114A···114AJ
order1222336619···1938···3838···3857···57114···114
size113344441···11···13···34···44···4

152 irreducible representations

dim111111113333
type++++
imageC1C2C3C6C19C38C57C114A4C2×A4A4×C19A4×C38
kernelA4×C38A4×C19C22×C38C2×C38C2×A4A4C23C22C38C19C2C1
# reps112218183636111818

Matrix representation of A4×C38 in GL3(𝔽229) generated by

17200
01720
00172
,
22800
02280
13501
,
22800
9510
00228
,
1342270
0951
01350
G:=sub<GL(3,GF(229))| [172,0,0,0,172,0,0,0,172],[228,0,135,0,228,0,0,0,1],[228,95,0,0,1,0,0,0,228],[134,0,0,227,95,135,0,1,0] >;

A4×C38 in GAP, Magma, Sage, TeX

A_4\times C_{38}
% in TeX

G:=Group("A4xC38");
// GroupNames label

G:=SmallGroup(456,49);
// by ID

G=gap.SmallGroup(456,49);
# by ID

G:=PCGroup([5,-2,-3,-19,-2,2,2288,4284]);
// Polycyclic

G:=Group<a,b,c,d|a^38=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of A4×C38 in TeX

׿
×
𝔽