Copied to
clipboard

G = A4xC38order 456 = 23·3·19

Direct product of C38 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xC38, C23:C57, C22:C114, (C2xC38):6C6, (C22xC38):1C3, SmallGroup(456,49)

Series: Derived Chief Lower central Upper central

C1C22 — A4xC38
C1C22C2xC38A4xC19 — A4xC38
C22 — A4xC38
C1C38

Generators and relations for A4xC38
 G = < a,b,c,d | a38=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

Subgroups: 52 in 24 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C3, C6, A4, C19, C2xA4, C38, C57, C114, A4xC19, A4xC38
3C2
3C2
4C3
3C22
3C22
4C6
3C38
3C38
4C57
3C2xC38
3C2xC38
4C114

Smallest permutation representation of A4xC38
On 114 points
Generators in S114
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(77 96)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)(85 104)(86 105)(87 106)(88 107)(89 108)(90 109)(91 110)(92 111)(93 112)(94 113)(95 114)
(1 97 63)(2 98 64)(3 99 65)(4 100 66)(5 101 67)(6 102 68)(7 103 69)(8 104 70)(9 105 71)(10 106 72)(11 107 73)(12 108 74)(13 109 75)(14 110 76)(15 111 39)(16 112 40)(17 113 41)(18 114 42)(19 77 43)(20 78 44)(21 79 45)(22 80 46)(23 81 47)(24 82 48)(25 83 49)(26 84 50)(27 85 51)(28 86 52)(29 87 53)(30 88 54)(31 89 55)(32 90 56)(33 91 57)(34 92 58)(35 93 59)(36 94 60)(37 95 61)(38 96 62)

G:=sub<Sym(114)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114), (1,97,63)(2,98,64)(3,99,65)(4,100,66)(5,101,67)(6,102,68)(7,103,69)(8,104,70)(9,105,71)(10,106,72)(11,107,73)(12,108,74)(13,109,75)(14,110,76)(15,111,39)(16,112,40)(17,113,41)(18,114,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(25,83,49)(26,84,50)(27,85,51)(28,86,52)(29,87,53)(30,88,54)(31,89,55)(32,90,56)(33,91,57)(34,92,58)(35,93,59)(36,94,60)(37,95,61)(38,96,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114), (1,97,63)(2,98,64)(3,99,65)(4,100,66)(5,101,67)(6,102,68)(7,103,69)(8,104,70)(9,105,71)(10,106,72)(11,107,73)(12,108,74)(13,109,75)(14,110,76)(15,111,39)(16,112,40)(17,113,41)(18,114,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(25,83,49)(26,84,50)(27,85,51)(28,86,52)(29,87,53)(30,88,54)(31,89,55)(32,90,56)(33,91,57)(34,92,58)(35,93,59)(36,94,60)(37,95,61)(38,96,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(77,96),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103),(85,104),(86,105),(87,106),(88,107),(89,108),(90,109),(91,110),(92,111),(93,112),(94,113),(95,114)], [(1,97,63),(2,98,64),(3,99,65),(4,100,66),(5,101,67),(6,102,68),(7,103,69),(8,104,70),(9,105,71),(10,106,72),(11,107,73),(12,108,74),(13,109,75),(14,110,76),(15,111,39),(16,112,40),(17,113,41),(18,114,42),(19,77,43),(20,78,44),(21,79,45),(22,80,46),(23,81,47),(24,82,48),(25,83,49),(26,84,50),(27,85,51),(28,86,52),(29,87,53),(30,88,54),(31,89,55),(32,90,56),(33,91,57),(34,92,58),(35,93,59),(36,94,60),(37,95,61),(38,96,62)]])

152 conjugacy classes

class 1 2A2B2C3A3B6A6B19A···19R38A···38R38S···38BB57A···57AJ114A···114AJ
order1222336619···1938···3838···3857···57114···114
size113344441···11···13···34···44···4

152 irreducible representations

dim111111113333
type++++
imageC1C2C3C6C19C38C57C114A4C2xA4A4xC19A4xC38
kernelA4xC38A4xC19C22xC38C2xC38C2xA4A4C23C22C38C19C2C1
# reps112218183636111818

Matrix representation of A4xC38 in GL3(F229) generated by

17200
01720
00172
,
22800
02280
13501
,
22800
9510
00228
,
1342270
0951
01350
G:=sub<GL(3,GF(229))| [172,0,0,0,172,0,0,0,172],[228,0,135,0,228,0,0,0,1],[228,95,0,0,1,0,0,0,228],[134,0,0,227,95,135,0,1,0] >;

A4xC38 in GAP, Magma, Sage, TeX

A_4\times C_{38}
% in TeX

G:=Group("A4xC38");
// GroupNames label

G:=SmallGroup(456,49);
// by ID

G=gap.SmallGroup(456,49);
# by ID

G:=PCGroup([5,-2,-3,-19,-2,2,2288,4284]);
// Polycyclic

G:=Group<a,b,c,d|a^38=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of A4xC38 in TeX

׿
x
:
Z
F
o
wr
Q
<