Copied to
clipboard

G = C5⋊D15⋊C3order 450 = 2·32·52

The semidirect product of C5⋊D15 and C3 acting faithfully

metabelian, soluble, monomial, A-group

Aliases: C5⋊D15⋊C3, C3⋊(C52⋊C6), (C5×C15)⋊1C6, C52⋊C32S3, C522(C3×S3), (C3×C52⋊C3)⋊1C2, SmallGroup(450,24)

Series: Derived Chief Lower central Upper central

C1C5×C15 — C5⋊D15⋊C3
C1C52C5×C15C3×C52⋊C3 — C5⋊D15⋊C3
C5×C15 — C5⋊D15⋊C3
C1

Generators and relations for C5⋊D15⋊C3
 G = < a,b,c,d | a5=b15=c2=d3=1, dbd-1=ab=ba, cac=a-1, dad-1=a3b12, cbc=b-1, dcd-1=ac >

75C2
25C3
50C3
3C5
3C5
25S3
75C6
25C32
45D5
45D5
3C15
3C15
25C3×S3
15D15
15D15
3C5⋊D5
2C52⋊C3
3C52⋊C6

Character table of C5⋊D15⋊C3

 class 123A3B3C3D3E5A5B5C5D6A6B15A15B15C15D15E15F15G15H
 size 1752252550506666757566666666
ρ1111111111111111111111    trivial
ρ21-1111111111-1-111111111    linear of order 2
ρ31-11ζ32ζ3ζ32ζ31111ζ65ζ611111111    linear of order 6
ρ41-11ζ3ζ32ζ3ζ321111ζ6ζ6511111111    linear of order 6
ρ5111ζ32ζ3ζ32ζ31111ζ3ζ3211111111    linear of order 3
ρ6111ζ3ζ32ζ3ζ321111ζ32ζ311111111    linear of order 3
ρ720-122-1-1222200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-1-1--3-1+-3ζ6ζ65222200-1-1-1-1-1-1-1-1    complex lifted from C3×S3
ρ920-1-1+-3-1--3ζ65ζ6222200-1-1-1-1-1-1-1-1    complex lifted from C3×S3
ρ1060600001-5-3+5/2-3-5/21+500-3+5/21+51-51-51+5-3-5/2-3+5/2-3-5/2    orthogonal lifted from C52⋊C6
ρ116060000-3-5/21-51+5-3+5/2001-5-3+5/2-3-5/2-3-5/2-3+5/21+51-51+5    orthogonal lifted from C52⋊C6
ρ126060000-3+5/21+51-5-3-5/2001+5-3-5/2-3+5/2-3+5/2-3-5/21-51+51-5    orthogonal lifted from C52⋊C6
ρ1360600001+5-3-5/2-3+5/21-500-3-5/21-51+51+51-5-3+5/2-3-5/2-3+5/2    orthogonal lifted from C52⋊C6
ρ1460-30000-3+5/21+51-5-3-5/200-1-5/2-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-1+5/2-1-5/2-1+5/2    orthogonal faithful
ρ1560-30000-3-5/21-51+5-3+5/200-1+5/2-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-1-5/2-1+5/2-1-5/2    orthogonal faithful
ρ1660-300001+5-3-5/2-3+5/21-500ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-1+5/2-1-5/2-1-5/2-1+5/2-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452    orthogonal faithful
ρ1760-300001-5-3+5/2-3-5/21+500-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-1-5/2-1+5/2-1+5/2-1-5/2-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525    orthogonal faithful
ρ1860-30000-3+5/21+51-5-3-5/200-1-5/2ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-1+5/2-1-5/2-1+5/2    orthogonal faithful
ρ1960-300001+5-3-5/2-3+5/21-500-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-1+5/2-1-5/2-1-5/2-1+5/2-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452    orthogonal faithful
ρ2060-30000-3-5/21-51+5-3+5/200-1+5/2-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452-1-5/2-1+5/2-1-5/2    orthogonal faithful
ρ2160-300001-5-3+5/2-3-5/21+500-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452-1-5/2-1+5/2-1+5/2-1-5/2ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53    orthogonal faithful

Smallest permutation representation of C5⋊D15⋊C3
On 45 points
Generators in S45
(1 15 5 11 8)(2 13 6 12 9)(3 14 4 10 7)(16 25 19 28 22)(17 26 20 29 23)(18 27 21 30 24)(31 34 37 40 43)(32 35 38 41 44)(33 36 39 42 45)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
(1 11)(2 10)(3 12)(4 13)(5 15)(6 14)(7 9)(16 20)(17 19)(21 30)(22 29)(23 28)(24 27)(25 26)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)(43 45)
(1 38 30)(2 33 25)(3 43 20)(4 40 23)(5 35 18)(6 45 28)(7 37 26)(8 32 21)(9 42 16)(10 31 17)(11 41 27)(12 36 22)(13 39 19)(14 34 29)(15 44 24)

G:=sub<Sym(45)| (1,15,5,11,8)(2,13,6,12,9)(3,14,4,10,7)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24)(31,34,37,40,43)(32,35,38,41,44)(33,36,39,42,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,11)(2,10)(3,12)(4,13)(5,15)(6,14)(7,9)(16,20)(17,19)(21,30)(22,29)(23,28)(24,27)(25,26)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(43,45), (1,38,30)(2,33,25)(3,43,20)(4,40,23)(5,35,18)(6,45,28)(7,37,26)(8,32,21)(9,42,16)(10,31,17)(11,41,27)(12,36,22)(13,39,19)(14,34,29)(15,44,24)>;

G:=Group( (1,15,5,11,8)(2,13,6,12,9)(3,14,4,10,7)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24)(31,34,37,40,43)(32,35,38,41,44)(33,36,39,42,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,11)(2,10)(3,12)(4,13)(5,15)(6,14)(7,9)(16,20)(17,19)(21,30)(22,29)(23,28)(24,27)(25,26)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(43,45), (1,38,30)(2,33,25)(3,43,20)(4,40,23)(5,35,18)(6,45,28)(7,37,26)(8,32,21)(9,42,16)(10,31,17)(11,41,27)(12,36,22)(13,39,19)(14,34,29)(15,44,24) );

G=PermutationGroup([[(1,15,5,11,8),(2,13,6,12,9),(3,14,4,10,7),(16,25,19,28,22),(17,26,20,29,23),(18,27,21,30,24),(31,34,37,40,43),(32,35,38,41,44),(33,36,39,42,45)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)], [(1,11),(2,10),(3,12),(4,13),(5,15),(6,14),(7,9),(16,20),(17,19),(21,30),(22,29),(23,28),(24,27),(25,26),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37),(43,45)], [(1,38,30),(2,33,25),(3,43,20),(4,40,23),(5,35,18),(6,45,28),(7,37,26),(8,32,21),(9,42,16),(10,31,17),(11,41,27),(12,36,22),(13,39,19),(14,34,29),(15,44,24)]])

Matrix representation of C5⋊D15⋊C3 in GL6(𝔽31)

1210000
3000000
0012100
0030000
191819181819
113113130
,
16260000
5140000
00261700
0014800
055192716
15171742420
,
8200000
17230000
00201500
00231100
088281217
23202028819
,
001000
000100
0000121
303030302930
000010
1000190

G:=sub<GL(6,GF(31))| [12,30,0,0,19,1,1,0,0,0,18,13,0,0,12,30,19,1,0,0,1,0,18,13,0,0,0,0,18,13,0,0,0,0,19,0],[16,5,0,0,0,15,26,14,0,0,5,17,0,0,26,14,5,17,0,0,17,8,19,4,0,0,0,0,27,24,0,0,0,0,16,20],[8,17,0,0,0,23,20,23,0,0,8,20,0,0,20,23,8,20,0,0,15,11,28,28,0,0,0,0,12,8,0,0,0,0,17,19],[0,0,0,30,0,1,0,0,0,30,0,0,1,0,0,30,0,0,0,1,0,30,0,0,0,0,12,29,1,19,0,0,1,30,0,0] >;

C5⋊D15⋊C3 in GAP, Magma, Sage, TeX

C_5\rtimes D_{15}\rtimes C_3
% in TeX

G:=Group("C5:D15:C3");
// GroupNames label

G:=SmallGroup(450,24);
// by ID

G=gap.SmallGroup(450,24);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,182,1443,2348,9004,1359]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^15=c^2=d^3=1,d*b*d^-1=a*b=b*a,c*a*c=a^-1,d*a*d^-1=a^3*b^12,c*b*c=b^-1,d*c*d^-1=a*c>;
// generators/relations

Export

Subgroup lattice of C5⋊D15⋊C3 in TeX
Character table of C5⋊D15⋊C3 in TeX

׿
×
𝔽