Extensions 1→N→G→Q→1 with N=S3×C38 and Q=C2

Direct product G=N×Q with N=S3×C38 and Q=C2
dρLabelID
S3×C2×C38228S3xC2xC38456,52

Semidirect products G=N:Q with N=S3×C38 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C38)⋊1C2 = C57⋊D4φ: C2/C1C2 ⊆ Out S3×C382284-(S3xC38):1C2456,15
(S3×C38)⋊2C2 = C19⋊D12φ: C2/C1C2 ⊆ Out S3×C382284+(S3xC38):2C2456,17
(S3×C38)⋊3C2 = C2×S3×D19φ: C2/C1C2 ⊆ Out S3×C381144+(S3xC38):3C2456,47
(S3×C38)⋊4C2 = C19×D12φ: C2/C1C2 ⊆ Out S3×C382282(S3xC38):4C2456,31
(S3×C38)⋊5C2 = C19×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C382282(S3xC38):5C2456,33

Non-split extensions G=N.Q with N=S3×C38 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C38).C2 = S3×Dic19φ: C2/C1C2 ⊆ Out S3×C382284-(S3xC38).C2456,13
(S3×C38).2C2 = S3×C76φ: trivial image2282(S3xC38).2C2456,30

׿
×
𝔽