direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C2×C38, C57⋊4C23, C114⋊4C22, C6⋊(C2×C38), C3⋊(C22×C38), (C2×C6)⋊3C38, (C2×C114)⋊7C2, SmallGroup(456,52)
Series: Derived ►Chief ►Lower central ►Upper central
| C3 — S3×C2×C38 |
Generators and relations for S3×C2×C38
G = < a,b,c,d | a2=b38=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 108 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, D6, C2×C6, C19, C22×S3, C38, C38, C57, C2×C38, C2×C38, S3×C19, C114, C22×C38, S3×C38, C2×C114, S3×C2×C38
Quotients: C1, C2, C22, S3, C23, D6, C19, C22×S3, C38, C2×C38, S3×C19, C22×C38, S3×C38, S3×C2×C38
(1 203)(2 204)(3 205)(4 206)(5 207)(6 208)(7 209)(8 210)(9 211)(10 212)(11 213)(12 214)(13 215)(14 216)(15 217)(16 218)(17 219)(18 220)(19 221)(20 222)(21 223)(22 224)(23 225)(24 226)(25 227)(26 228)(27 191)(28 192)(29 193)(30 194)(31 195)(32 196)(33 197)(34 198)(35 199)(36 200)(37 201)(38 202)(39 96)(40 97)(41 98)(42 99)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 113)(57 114)(58 77)(59 78)(60 79)(61 80)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(115 165)(116 166)(117 167)(118 168)(119 169)(120 170)(121 171)(122 172)(123 173)(124 174)(125 175)(126 176)(127 177)(128 178)(129 179)(130 180)(131 181)(132 182)(133 183)(134 184)(135 185)(136 186)(137 187)(138 188)(139 189)(140 190)(141 153)(142 154)(143 155)(144 156)(145 157)(146 158)(147 159)(148 160)(149 161)(150 162)(151 163)(152 164)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190)(191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228)
(1 109 187)(2 110 188)(3 111 189)(4 112 190)(5 113 153)(6 114 154)(7 77 155)(8 78 156)(9 79 157)(10 80 158)(11 81 159)(12 82 160)(13 83 161)(14 84 162)(15 85 163)(16 86 164)(17 87 165)(18 88 166)(19 89 167)(20 90 168)(21 91 169)(22 92 170)(23 93 171)(24 94 172)(25 95 173)(26 96 174)(27 97 175)(28 98 176)(29 99 177)(30 100 178)(31 101 179)(32 102 180)(33 103 181)(34 104 182)(35 105 183)(36 106 184)(37 107 185)(38 108 186)(39 124 228)(40 125 191)(41 126 192)(42 127 193)(43 128 194)(44 129 195)(45 130 196)(46 131 197)(47 132 198)(48 133 199)(49 134 200)(50 135 201)(51 136 202)(52 137 203)(53 138 204)(54 139 205)(55 140 206)(56 141 207)(57 142 208)(58 143 209)(59 144 210)(60 145 211)(61 146 212)(62 147 213)(63 148 214)(64 149 215)(65 150 216)(66 151 217)(67 152 218)(68 115 219)(69 116 220)(70 117 221)(71 118 222)(72 119 223)(73 120 224)(74 121 225)(75 122 226)(76 123 227)
(1 222)(2 223)(3 224)(4 225)(5 226)(6 227)(7 228)(8 191)(9 192)(10 193)(11 194)(12 195)(13 196)(14 197)(15 198)(16 199)(17 200)(18 201)(19 202)(20 203)(21 204)(22 205)(23 206)(24 207)(25 208)(26 209)(27 210)(28 211)(29 212)(30 213)(31 214)(32 215)(33 216)(34 217)(35 218)(36 219)(37 220)(38 221)(39 155)(40 156)(41 157)(42 158)(43 159)(44 160)(45 161)(46 162)(47 163)(48 164)(49 165)(50 166)(51 167)(52 168)(53 169)(54 170)(55 171)(56 172)(57 173)(58 174)(59 175)(60 176)(61 177)(62 178)(63 179)(64 180)(65 181)(66 182)(67 183)(68 184)(69 185)(70 186)(71 187)(72 188)(73 189)(74 190)(75 153)(76 154)(77 124)(78 125)(79 126)(80 127)(81 128)(82 129)(83 130)(84 131)(85 132)(86 133)(87 134)(88 135)(89 136)(90 137)(91 138)(92 139)(93 140)(94 141)(95 142)(96 143)(97 144)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 115)(107 116)(108 117)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)
G:=sub<Sym(228)| (1,203)(2,204)(3,205)(4,206)(5,207)(6,208)(7,209)(8,210)(9,211)(10,212)(11,213)(12,214)(13,215)(14,216)(15,217)(16,218)(17,219)(18,220)(19,221)(20,222)(21,223)(22,224)(23,225)(24,226)(25,227)(26,228)(27,191)(28,192)(29,193)(30,194)(31,195)(32,196)(33,197)(34,198)(35,199)(36,200)(37,201)(38,202)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(115,165)(116,166)(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)(123,173)(124,174)(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)(131,181)(132,182)(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)(139,189)(140,190)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,161)(150,162)(151,163)(152,164), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228), (1,109,187)(2,110,188)(3,111,189)(4,112,190)(5,113,153)(6,114,154)(7,77,155)(8,78,156)(9,79,157)(10,80,158)(11,81,159)(12,82,160)(13,83,161)(14,84,162)(15,85,163)(16,86,164)(17,87,165)(18,88,166)(19,89,167)(20,90,168)(21,91,169)(22,92,170)(23,93,171)(24,94,172)(25,95,173)(26,96,174)(27,97,175)(28,98,176)(29,99,177)(30,100,178)(31,101,179)(32,102,180)(33,103,181)(34,104,182)(35,105,183)(36,106,184)(37,107,185)(38,108,186)(39,124,228)(40,125,191)(41,126,192)(42,127,193)(43,128,194)(44,129,195)(45,130,196)(46,131,197)(47,132,198)(48,133,199)(49,134,200)(50,135,201)(51,136,202)(52,137,203)(53,138,204)(54,139,205)(55,140,206)(56,141,207)(57,142,208)(58,143,209)(59,144,210)(60,145,211)(61,146,212)(62,147,213)(63,148,214)(64,149,215)(65,150,216)(66,151,217)(67,152,218)(68,115,219)(69,116,220)(70,117,221)(71,118,222)(72,119,223)(73,120,224)(74,121,225)(75,122,226)(76,123,227), (1,222)(2,223)(3,224)(4,225)(5,226)(6,227)(7,228)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,197)(15,198)(16,199)(17,200)(18,201)(19,202)(20,203)(21,204)(22,205)(23,206)(24,207)(25,208)(26,209)(27,210)(28,211)(29,212)(30,213)(31,214)(32,215)(33,216)(34,217)(35,218)(36,219)(37,220)(38,221)(39,155)(40,156)(41,157)(42,158)(43,159)(44,160)(45,161)(46,162)(47,163)(48,164)(49,165)(50,166)(51,167)(52,168)(53,169)(54,170)(55,171)(56,172)(57,173)(58,174)(59,175)(60,176)(61,177)(62,178)(63,179)(64,180)(65,181)(66,182)(67,183)(68,184)(69,185)(70,186)(71,187)(72,188)(73,189)(74,190)(75,153)(76,154)(77,124)(78,125)(79,126)(80,127)(81,128)(82,129)(83,130)(84,131)(85,132)(86,133)(87,134)(88,135)(89,136)(90,137)(91,138)(92,139)(93,140)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)>;
G:=Group( (1,203)(2,204)(3,205)(4,206)(5,207)(6,208)(7,209)(8,210)(9,211)(10,212)(11,213)(12,214)(13,215)(14,216)(15,217)(16,218)(17,219)(18,220)(19,221)(20,222)(21,223)(22,224)(23,225)(24,226)(25,227)(26,228)(27,191)(28,192)(29,193)(30,194)(31,195)(32,196)(33,197)(34,198)(35,199)(36,200)(37,201)(38,202)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,113)(57,114)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(115,165)(116,166)(117,167)(118,168)(119,169)(120,170)(121,171)(122,172)(123,173)(124,174)(125,175)(126,176)(127,177)(128,178)(129,179)(130,180)(131,181)(132,182)(133,183)(134,184)(135,185)(136,186)(137,187)(138,188)(139,189)(140,190)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,161)(150,162)(151,163)(152,164), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228), (1,109,187)(2,110,188)(3,111,189)(4,112,190)(5,113,153)(6,114,154)(7,77,155)(8,78,156)(9,79,157)(10,80,158)(11,81,159)(12,82,160)(13,83,161)(14,84,162)(15,85,163)(16,86,164)(17,87,165)(18,88,166)(19,89,167)(20,90,168)(21,91,169)(22,92,170)(23,93,171)(24,94,172)(25,95,173)(26,96,174)(27,97,175)(28,98,176)(29,99,177)(30,100,178)(31,101,179)(32,102,180)(33,103,181)(34,104,182)(35,105,183)(36,106,184)(37,107,185)(38,108,186)(39,124,228)(40,125,191)(41,126,192)(42,127,193)(43,128,194)(44,129,195)(45,130,196)(46,131,197)(47,132,198)(48,133,199)(49,134,200)(50,135,201)(51,136,202)(52,137,203)(53,138,204)(54,139,205)(55,140,206)(56,141,207)(57,142,208)(58,143,209)(59,144,210)(60,145,211)(61,146,212)(62,147,213)(63,148,214)(64,149,215)(65,150,216)(66,151,217)(67,152,218)(68,115,219)(69,116,220)(70,117,221)(71,118,222)(72,119,223)(73,120,224)(74,121,225)(75,122,226)(76,123,227), (1,222)(2,223)(3,224)(4,225)(5,226)(6,227)(7,228)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,197)(15,198)(16,199)(17,200)(18,201)(19,202)(20,203)(21,204)(22,205)(23,206)(24,207)(25,208)(26,209)(27,210)(28,211)(29,212)(30,213)(31,214)(32,215)(33,216)(34,217)(35,218)(36,219)(37,220)(38,221)(39,155)(40,156)(41,157)(42,158)(43,159)(44,160)(45,161)(46,162)(47,163)(48,164)(49,165)(50,166)(51,167)(52,168)(53,169)(54,170)(55,171)(56,172)(57,173)(58,174)(59,175)(60,176)(61,177)(62,178)(63,179)(64,180)(65,181)(66,182)(67,183)(68,184)(69,185)(70,186)(71,187)(72,188)(73,189)(74,190)(75,153)(76,154)(77,124)(78,125)(79,126)(80,127)(81,128)(82,129)(83,130)(84,131)(85,132)(86,133)(87,134)(88,135)(89,136)(90,137)(91,138)(92,139)(93,140)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,115)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123) );
G=PermutationGroup([[(1,203),(2,204),(3,205),(4,206),(5,207),(6,208),(7,209),(8,210),(9,211),(10,212),(11,213),(12,214),(13,215),(14,216),(15,217),(16,218),(17,219),(18,220),(19,221),(20,222),(21,223),(22,224),(23,225),(24,226),(25,227),(26,228),(27,191),(28,192),(29,193),(30,194),(31,195),(32,196),(33,197),(34,198),(35,199),(36,200),(37,201),(38,202),(39,96),(40,97),(41,98),(42,99),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,113),(57,114),(58,77),(59,78),(60,79),(61,80),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(115,165),(116,166),(117,167),(118,168),(119,169),(120,170),(121,171),(122,172),(123,173),(124,174),(125,175),(126,176),(127,177),(128,178),(129,179),(130,180),(131,181),(132,182),(133,183),(134,184),(135,185),(136,186),(137,187),(138,188),(139,189),(140,190),(141,153),(142,154),(143,155),(144,156),(145,157),(146,158),(147,159),(148,160),(149,161),(150,162),(151,163),(152,164)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190),(191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228)], [(1,109,187),(2,110,188),(3,111,189),(4,112,190),(5,113,153),(6,114,154),(7,77,155),(8,78,156),(9,79,157),(10,80,158),(11,81,159),(12,82,160),(13,83,161),(14,84,162),(15,85,163),(16,86,164),(17,87,165),(18,88,166),(19,89,167),(20,90,168),(21,91,169),(22,92,170),(23,93,171),(24,94,172),(25,95,173),(26,96,174),(27,97,175),(28,98,176),(29,99,177),(30,100,178),(31,101,179),(32,102,180),(33,103,181),(34,104,182),(35,105,183),(36,106,184),(37,107,185),(38,108,186),(39,124,228),(40,125,191),(41,126,192),(42,127,193),(43,128,194),(44,129,195),(45,130,196),(46,131,197),(47,132,198),(48,133,199),(49,134,200),(50,135,201),(51,136,202),(52,137,203),(53,138,204),(54,139,205),(55,140,206),(56,141,207),(57,142,208),(58,143,209),(59,144,210),(60,145,211),(61,146,212),(62,147,213),(63,148,214),(64,149,215),(65,150,216),(66,151,217),(67,152,218),(68,115,219),(69,116,220),(70,117,221),(71,118,222),(72,119,223),(73,120,224),(74,121,225),(75,122,226),(76,123,227)], [(1,222),(2,223),(3,224),(4,225),(5,226),(6,227),(7,228),(8,191),(9,192),(10,193),(11,194),(12,195),(13,196),(14,197),(15,198),(16,199),(17,200),(18,201),(19,202),(20,203),(21,204),(22,205),(23,206),(24,207),(25,208),(26,209),(27,210),(28,211),(29,212),(30,213),(31,214),(32,215),(33,216),(34,217),(35,218),(36,219),(37,220),(38,221),(39,155),(40,156),(41,157),(42,158),(43,159),(44,160),(45,161),(46,162),(47,163),(48,164),(49,165),(50,166),(51,167),(52,168),(53,169),(54,170),(55,171),(56,172),(57,173),(58,174),(59,175),(60,176),(61,177),(62,178),(63,179),(64,180),(65,181),(66,182),(67,183),(68,184),(69,185),(70,186),(71,187),(72,188),(73,189),(74,190),(75,153),(76,154),(77,124),(78,125),(79,126),(80,127),(81,128),(82,129),(83,130),(84,131),(85,132),(86,133),(87,134),(88,135),(89,136),(90,137),(91,138),(92,139),(93,140),(94,141),(95,142),(96,143),(97,144),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,115),(107,116),(108,117),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123)]])
228 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 6A | 6B | 6C | 19A | ··· | 19R | 38A | ··· | 38BB | 38BC | ··· | 38DV | 57A | ··· | 57R | 114A | ··· | 114BB |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 6 | 19 | ··· | 19 | 38 | ··· | 38 | 38 | ··· | 38 | 57 | ··· | 57 | 114 | ··· | 114 |
| size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 | 2 | ··· | 2 |
228 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C19 | C38 | C38 | S3 | D6 | S3×C19 | S3×C38 |
| kernel | S3×C2×C38 | S3×C38 | C2×C114 | C22×S3 | D6 | C2×C6 | C2×C38 | C38 | C22 | C2 |
| # reps | 1 | 6 | 1 | 18 | 108 | 18 | 1 | 3 | 18 | 54 |
Matrix representation of S3×C2×C38 ►in GL3(𝔽229) generated by
| 228 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 4 | 0 |
| 0 | 0 | 4 |
| 1 | 0 | 0 |
| 0 | 0 | 228 |
| 0 | 1 | 228 |
| 1 | 0 | 0 |
| 0 | 228 | 1 |
| 0 | 0 | 1 |
G:=sub<GL(3,GF(229))| [228,0,0,0,1,0,0,0,1],[1,0,0,0,4,0,0,0,4],[1,0,0,0,0,1,0,228,228],[1,0,0,0,228,0,0,1,1] >;
S3×C2×C38 in GAP, Magma, Sage, TeX
S_3\times C_2\times C_{38} % in TeX
G:=Group("S3xC2xC38"); // GroupNames label
G:=SmallGroup(456,52);
// by ID
G=gap.SmallGroup(456,52);
# by ID
G:=PCGroup([5,-2,-2,-2,-19,-3,7604]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^38=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations